
Using DeepProbLog to perform
Complex Event Processing on an Audio Stream

Motivating scenario

I Audio sensors have been deployed in a city.
I We want to detect complex events:

• These are combinations of events distributed in time
and space.

• These can be detected by combinations of sounds
defined by an expert.

• For instance, if there is shouting, glass sha�ering and
sirens, we can detect a riot.

I However, we do not have large amounts of
training data, as these situations are rare.

Objectives

I Being able to use subsymbolic data as input.
I Retaining flexibility in rule definitions.
I Being able to perform end-to-end training.
I Being robust against noisily labelled data.

Related work and its limitations
There are three main types of approaches to this type of problem:
I Combining pre-trained neural networks with symbolic approaches. [1,2]

• Requires access to pre-trained neural networks.

I Neural network approaches such as LSTMs [3] or Convolutional 3Ds [4].
• They require very large amounts of data to train.
• Does not allow for rule definitions by experts.

I Neuro-symbolic approaches. [5]
• Currently, they significantly limit rule definitions.
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Proposed approach
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happensAt(ceSiren, T) :-

window(W),

sequence([siren, siren], W, T).

happensAt(ceDrill, T) :-

window(W),

sequence([drill, drill], W, T).

...
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DeepProbLog

The ProbLog code in the figure above shows the example rules used in the
experiments below. These use the clause sequence to define event pa�erns. Users
are able to define more complex rules with the full expressiveness of ProbLog.

Base dataset
We generated a synthetic dataset based on Urban Sounds 8K. The resulting
dataset contains 10 types of complex events, which happen when two instances
of the same class of sound occur within a window of time. In our experiments,
we used window sizes between 2 and 5 seconds.
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Random noise datasets
I To evaluate robustness to noisily labelled data, we generated random noise

datasets.
I These have di�erent percentages of noisy data (0% to 60% of the dataset).
I For this noisy data, the correct label has been replaced by a random one.

Results
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Figure: Evaluation of system’s performance with the
di�erent percentages of noise from the random noise
datasets. Each colour represents a di�erent window size.
Error bars show the standard deviation over 3 executions.

I As shown in the figure above, our approach
performs fairly well with the base dataset
(percentage of noise of 0.0).

I Bigger window sizes perform worse than
the smaller ones. This is due to the added
complexity of bigger window sizes.

I A percentage of noise of 20% has an almost
imperceptible e�ect on the accuracy of the
system.

I Bigger percentages of noise lead to
unreliable results, as the system is not able
to train correctly in a consistent manner.

Conclusions and future work
I We have designed a system that fulfills all

four objectives.
I As future work, we want to consider other

types of subsymbolic data.
I Improvements to the time e�iciency of our

approach would also be a good area of
research, as that is a downside of our
approach.
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