Using DeepProbLog to perform
Complex Event Processing on an Audio Stream

Motivating scenario Related work and its limitations
Audio sensors have been deployed in a city. There are three main types of approaches to this type of problem:
We want to detect complex events: Combining pre-trained neural networks with symbolic approaches. [1,2]
These are combinations of events distributed in time Requires access to pre-trained neural networks.
and space. Neural network approaches such as LSTMs [3] or Convolutional 3Ds [4].

These can be detected by combinations of sounds
defined by an expert.

For instance, if there is shouting, glass shattering and
sirens, we can detect a riot.

They require very large amounts of data to train.
Does not allow for rule definitions by experts.
Neuro-symbolic approaches. [5]

Currently, they significantly limit rule definitions.
However, we do not have large amounts of
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The ProbLog code in the figure above shows the example rules used in the ) _ , _
) . Figure: Evaluation of system’s performance with the
experiments below. These use the clause sequence to define event patterns. Users i T
are able to define more complex rules with the full expressiveness of ProbLog. datasets. Each colour represents a different window size.
Error bars show the standard deviation over 3 executions.
As shown in the figure above, our approach

Base dataset
performs fairly well with the base dataset

We generated a synthetic dataset based on Urban Sounds 8K. The resulting (percentage of noise of 0.0).
dataset contains 10 types of complex events, which happen when two instances Bigger window sizes perform worse than
of the same class of sound occur within a window of time. In our experiments, the smaller ones. This is due to the added
we used window sizes between 2 and 5 seconds. complexity of bigger window sizes
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four objectives.

As future work, we want to consider other

Random noise datasets ,
types of subsymbolic data.

To evaluate robustness to noisily labelled data, we generated random noise Improvements to the time efficiency of our

datasets. approach would also be a good area of
These have different percentages of noisy data (0% to 60% of the dataset). research, as that is a downside of our
For this noisy data, the correct label has been replaced by a random one. approach. -
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