
KU Leuven
Department of Computer Science
Celestijnenlaan 200A box 2402
3001 Leuven, Belgium

Approximate inference for Neural Probabilistic Logic Programming
Robin Manhaeve1, Giuseppe Marra1, Luc De Raedt1,2

1KU Leuven, 2Örebro University
robin.manhaeve@cs.kuleuven.be

Integrating reasoning and perception

Integrating low-level perception with high-level reasoning is one of the oldest, and yet
most active open challenges in AI.

Low-level perception is typically handled by deep learning.

High-level reasoning is typically addressed using (probabilistic) logical representations
and inference.

Joining the full flexibility of high-level probabilistic reasoning with the representational
power of deep neural networks is still an open problem.

Our approach

Instead of integrating reasoning capabilities into a complex neural network architecture,
we proceed the other way round.

DeepProbLog is a probabilistic logic programming language incorporating deep learning

It contains expressive probabilistic-logical modeling and reasoning

It encapsulates general-purpose neural networks

It can be trained end-to-end on examples

Our approach has:

The expressiveness and strengths of both worlds

A clean separation between the neural and the logic components

Clear semantics

DeepProbLog

ProbLog: Prolog + Probabilities

(Probabilistic) facts:

0.1 : :burglary. 0.2 : :earthquake. 0.5 : :hears_alarm(mary). 0.4 : :hears_alarm(john).

Rules:

alarm :−earthquake. alarm :−burglary. calls :−alarm, hears_alarm(X).

DeepProbLog: ProbLog + Neural predicates

Neural predicate: represents relation between input and output in logic

Neural Annotated Disjunction (nAD):

nn(mr, I⃗, O, d⃗) :: r(I⃗ , O).

Evaluates a neural network mr on input I⃗

It defines a probability distribution over the output domain d⃗.

Exact inference scales poorly

Standard example: classify the sum of two MNIST numbers, e.g: + = 63

Encode the background knowledge of the sum.

Define the neural predicate for classifying the digits.

nn(classifier, [X], Y, [0, ..., 9]) :: classify(X, Y).

Define the addition.

times10plus(X, Y, Z) : −Z is 10 ∗ Y+ X.

images_to_number(I, N) :–

maplist(classify, I, L),

foldl(timesplus, L, 0, N).

addition(I1, I2, R) :–

images_to_number(I1, N1),

images_to_number(I2, N2),

R is N1+ N2.

Number of proofs generally grows exponentially with length of number.

Exact inference quickly becomes intractable as it considers all possible proofs

On proof should hold all the probability mass

All other proofs are irrelevant

Approximate Inference

Approximate inference: search for the best subset of proofs

An A* search in SLD tree

Heuristics are essential to performance

Probability of (partial) proofs

P (E) = P (
∧

f∈Ef

f
∧

g∈Eg

g)

=

 ∏
f∈Ef

P (f)

P (
∧

g∈Eg

g |
∧

f∈Ef

f)

A* search

cost(E) = − log

 ∏
f∈Ef

P (f)

 h(E) = − logH(E) ≈ − logP (
∧

g∈Eg

g|
∧

f∈Ef

f)

Heuristics

Uniform cost search

One proof should hold all the probability mass: geometric mean heuristic

Generalizability between goals that contain sub-symbolic data: learned neural heuristic

Exploration

cost(E) = − log

 ∏
f∈Ef

P (f) + PUCB(f)− P (f)PUCB(f)



Experimental evaluation

Experiments:

MNIST addition [,] + [,] = 49

MIL MNIST addition (+ = 7) ∨ (+ = 7)

HWF

CLUTRR

1 2 3 4 5
Number length

10 2

10 1

100

101

102

Av
er

ag
e

qu
er

y
tim

e
(s

)

NeurASP
DeepProbLog
DPLA*: UCS(0)
DPLA*: UCS(16)
DPLA*: UCS(128)
DPLA*: GM(0)
DPLA*: GM(16)
DPLA*: GM(128)

a) The average query time for different meth-
ods on the MNIST addition set.

0.2 0.4 0.6 0.8 1.0
Accuracy

0.02

0.04

0.06

0.08

0.10

Av
er

ag
e

qu
er

y
tim

e
(s

)

b) The average query time on the MNIST ad-
dition task for DPLA* w.r.t. accuracy.

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

c) Neural predicate accuracy for the MIL Ad-
dition task

0 2000 4000 6000 8000 10000
Iterations

5 × 10 2

6 × 10 2

7 × 10 2

P
ro

v
in

g
 t

im
e

Pre-train 0, No exploration

Pre-train 0, Exploration

Pre-train 100, No exploration

Pre-train 100, Exploration

Pre-train 500, No exploration

Pre-train 500, Exploration

d) Moving average of the query time for the
MIL Addition task

Conclusion

We introduced DPLA* that implements approximate inference for neural-symbolic prob-
abilistic logic programming by using only a subset of all proofs.

It uses A*-search and heuristics to efficiently search for the best proofs.

DPLA* is more scalable than exact inference methods.

Approximate inference and learning can cause issues in convergence and stability.

Exploration or curriculum learning can be used to solve these issues.

