Investigating Logic Tensor Networks for Neural-Symbolic Argument Mining

ALMA MATER STUDIORUM Università di Bologna

Problem Definition

Argument Mining

- Aim: automatic extraction of arguments and their relations from natural language texts
- S.o.t.a. approaches based on deep networks
- Still, debates and persuasion are still challenging domains for deep learning by itself

Neural-Symbolic Argument Mining

- Exploit domain and expert knowledge by imposing rules and constraints
- Problem: most of NeSy frameworks are under development and not optimized for AM tasks
- **Collective classification**: must consider the network of connected components
- Scalability: large datasets containing large documents
- **Objective**: classification of components (CLAIM or PREMISE) and link prediction exploiting a neural-symbolic framework to impose domain-related constraints

Logic Tensor Networks

Framework features

- Tensorization approach: FOL entities are embedded into real-valued tensors
- Background knowledge expressed through first-order fuzzy logic
- Vertical-hybrid system: high-level logic is placed on top of deep networks
- Possible to use any neural model (but there are limitation due to scalability issues)
- Possible to specify rules as FOL strings

LTN Entities

- **Variables**: abstract representation, linked to the possible groundings (real data)
- **Predicates**: operations over variables, produce a single value between 0 and 1
- **Axioms**: logic conditions that are used as optimization objectives

LTN for Argument Mining

Predicates

Define 4 predicates:

- PREMISE(X) and CLAIM(X)
- LINK(X,Y) and ~LINK(X,Y)
- LINK(X,Y) means X supports Y

Networks

Define two networks:

- *NNComp* predicts components type (P or C)
- *NNLink* predicts relationships (yes or no)

Each output of each network is the probability of a class.

Andrea Galassi¹, Marco Lippi², Paolo Torroni¹ ¹DISI, University of Bologna, Italy ²DISMI, University of Modena and Reggio Emilia, Italy

Combining Predicates and Networks

Association between degree of truth of a predicate and output of the networks

- Outputs of *NNComp* are connected to PREMISE and CLAIM
- Outputs of *NNLink* are connected to LINK and ~LINK

Use of simple neural models Compare two training methods Neural is trained only on data *NeSy* is trained combining data-driven and rules-driven optimization

Classification accuracy Robustness against random Compliance to properties

The NeSy approach improves all the aspects, especially the compliance

- symbolic parts are independent

Method

Neural Models

Anti-symmetry:

 $\forall vC_1, vC_2:$

Claims can be linked only to claims: If A=>B, and A is a claim, then B is a claim.

Results

Evaluation Criteria

Results

		Classification		Agreement		Properties	
Dataset	Approach	Comp.	Link	Comp.	Link	Eq. 2	Eq. 3
Neoplasm	NEURAL	79 - 80	34 - 31	77	64	87 - 81	96 - 85
	NESy	79 - 78	35 - 35	79	70	99 - 96	99 - 94
Glaucoma	NEURAL	82 - 82	45 - 43	75	66	93 - 90	89 - 74
	NESy	81 - 82	47 - 45	75	71	≈ 100 - 98	99 - 90
Mixed	NEURAL	81 - 81	38 - 34	75	64	89 - 85	95 - 86
	NeSy	81 - 80	39 - 40	76	69	≈ 100 - 97	97 - 96

AbstRCT dataset: scientific abstracts

Conclusion

Features

- Rules can be used at inference time to investigate models Using FOL rules: domain experts do not
- need machine learning expertise
- Decoupled architecture: symbolic and sub-
- Improvement in performances

Open Challenges and Future Works

Rules Axioms

If A=>B is true, then B=>A is false

 $LINK(vC_1, vC_2) \Rightarrow \sim LINK(vC_2, vC_1)$

 $\forall vC_1, vC_2 : LINK(vC_1, vC_2)$ $\wedge CLAIM(vC_1) \Rightarrow CLAIM(vC_2)$

Scalability! Currently impossible to use s.o.t.a. models or bigger datasets • Rules with different granularity Weighted loss: rules vs preferences Use of predicates without grounding: Inference of new properties