Propagation on Multi-relational Graphs for Node Regression [Accepted to Complex Networks 2021] Eda Bayram

- e.g., social networks, biological networks, transportation networks, etc..

• Parameters of a certain relation type $\{\tau_{\mathbf{p}}, \eta_{\mathbf{p}}, \omega_{\mathbf{p}}\}$ estimated over initially labeled node pairs $\{(x_i, x_j) | i, j \in \mathcal{U}, \mathbf{r}(i, j) = \mathbf{p}\}$ similar to parameter estimation of a linear regression model. - Weight parameter $\omega_{\mathbf{p}}$ is equal to the uncertainty of the linear regression model of relation type \mathbf{p} **MRP** drops down to standard propagation by default parameter set $\{\tau_{\mathbf{p}} = 0, \eta_{\mathbf{p}} = 1, \omega_{\mathbf{p}} = 1 \forall \mathbf{p} \in \mathcal{P}\}$ Implemented with PyTorch-scatter package, linearly scales with $|\mathcal{E}|$

)11	0.115
)11	0.113
)12	0.108
)12	0.116
)13	0.119
)11	0.112
)11	0.113
)12	0.117
)08	0.086
005	0.055

RMSE MAPE nRMSE			Precipitation					
Tomporature	LP	1.120	0.155	0.050		$ \mathbf{RMSE} $	MAPE	nRMSE
	MRP	1.040	0.147	0.045	LP-altitude	381.86	0.261	0.174
Spowfall	LP	194.49	0.405	0.112	LP-gps	374.38	0.242	0.168
Showlan	MrP	180.10	0.357	0.105	MrP	347.98	0.238	0.157

IJCLR2021	The second
Neighborhood aggregation 3	Propagation algorithm
$\frac{\sum_{(i,j)\in\mathcal{E}}\omega_{ij}x_j}{\sum_{(i,j)\in\mathcal{E}}\omega_{ij}}$ Simple Weighted Average	
$-\tau_{p})^{2} \frac{\sum_{p \in \mathcal{P} \cup \mathcal{P}^{-1}} \sum_{\mathbf{r}(i,j)=p} \omega_{p} f_{p}(x_{j})}{\sum_{p \in \mathcal{P} \cup \mathcal{P}^{-1}} \sum_{\mathbf{r}(i,j)=p} \omega_{p}}$ Relational Transformation $f_{p}(x) = \eta_{p} x + \tau_{p}$	

• Weather stations $|\mathcal{V}| = 86$ connected via $|\mathcal{P}| = 2$ relationships:

• Regarding asymmetric relations with relational transformation in aggregation