A Statistical Relational Approach to Learning Distance-based GCNs Devendra Singh Dhami, Siwen Yan and Sriraam Natarajan Strainglab

TECHNISCHE UNIVERSITÄT DARMSTADT

Overview

- Bridging the gap between Statistical Relational learning and graph neural networks
- Learning distance-based Graph Convolutional Networks (GCNs) for relational data
- Embed the original graph into the Euclidean space => secondary Euclidean graph
 - Using relational density estimation
- Vertices correspond to target triples & edges to Euclidean distance between target triples

Relational Density-based GCN

- Learning RD²GCN: Learn relational decision trees for separate densities -> extract first order rules -> count number of satisfied groundings
- Vanilla GCN: feature matrix and adjacency matrix & RD²GCN: relation rule matrix (obtained by counting the number of satisfied groundings of the obtained first-order rules (R1 - Rm) w.r.t the query variables) and distance matrix

CoAuthor(John Loft, Jack Hill)

Experiments

[Task		Data Set		elations	# Facts	#+v
ľ	Link Prediction			ICML'18 ICLR		4	1395	
						4	4730	
				DDI		14	1774	
D	ata	Methods	Recall	Precision	F1	AUC-PR		
		Gaifman	0.10	0.16	0.174	0.127		
		Neural-LP ₃	0.927	0.024	0.047	0.267		1.0 -
		Neural-LP ₁₀	0.891	0.035	0.069	0.143		
		metapath2vec	0.836	0.209	0.335	0.286		
		PRAGCN	0.0	0.0	0.0	0.512		0.8 -
ICM	1L'18	ComplEx	0.85	0.013	0.03	0.04		
		ConvE	0.636	0.01	0.02	0.015		0.6 -
		SimplE	0.927	0.012	0.023	0.128		
		N+LF	0.379	1.0	0.549	0.396		0.1
		R-GCN	0.636	0.07	0.13	0.13		0.4
		CompGCN	0.727	0.022	0.044	0.185		
		RD ² GCN	0.389	1.0	0.561	0.556		0.2 -
		Gaifman	0.564	0.795	0.66	0.488		
		Neural-LP $_3$	0.939	0.308	0.463	0.421		
		Neural-LP $_{10}$	0.987	0.275	0.429	0.453		0.0
		metapath2vec	0.828	0.338	0.480	0.641		
		PRAGCN	0.0	0.0	0.0	0.544		
Ι	CLR	ComplEx	0.269	0.032	0.057	0.105		
		ConvE	0.677	0.037	0.069	0.054		
		SimplE	0.973	0.054	0.102	0.535		1.0
		N+LF	0.97	1.0	0.984	0.972		
		R-GCN	0.667	0.783	0.720	0.763		
		CompGCN	0.906	0.719	0.802	0.912		0.8
		RD²GCN	0.594	1.0	0.745	0.972		
		Gaifman	0.469	0.707	0.564	0.581		0.6
		Neural-LP ₃	0.727	0.336	0.459	0.368		
		Neural-LP $_{10}$	0.779	0.338	0.472	0.403		
		metapath2vec	0.782	0.652	0.711	0.707		0.4
		PRAGCN	0.427	0.700	0.531	0.695		
D	DDI	ComplEx	0.832	0.492	0.618	0.705		0.7
		ConvE	0.931	0.384	0.544	0.678		0.2
		SimplE	0.992	0.288	0.446	0.503		
		N+LF	0.682	0.924	0.785	0.781		0.0
		R-GCN	0.571	1.0	0.727	0.922		
		CompGCN	0.882	0.552	0.679	0.826		
		RD²GCN	0.998	0.986	0.992	0.998		

Conclusion and Future work

- We present RD²GCN, a graph neural network that can learn from multi-relational data utilizing the different densities separately
- We do not make assumptions on the supervision or the arity of predicates and automatically constructs rules that allow for a rich latent representation
- RD²GCN replaces adjacency matrix with distance matrix which allows the RD²GCN to learn richer set of features, allow for meaningful interpretations and have clear semantics
- Future works
 - Joint learning and inference over multiple types of relations
 - Using more classical rule learning techniques
 - Extending our framework to node classification
 - Learning in the presence of hidden/latent data and rich human domain knowledge

https://starling.utdallas.edu/ https://www.ml.informatik.tu-darmstadt.de/ https://sites.google.com/view/devendradhami DSD, SY and SN acknowledge DARPA Minerva award FA9550-19-1-0391. DSD acknowledges ICT-48 Network of AI Research Excellence Center \TAILOR" (EU Horizon 2020, GA No 952215) and the Collaboration Lab \Al in Construction" (AICO). SN acknowledges AFOSR award FA9550-18-1-0462. Any opinions, findings, conclusion or recommendations expressed are those of the authors and do not necessarily represent the view of AFOSR, DARPA or the US government.

