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Motivation

● We trained four different models. Two of them use the original AlphaNPI implementation. The other two uses our model. Moreover, we tested our Approximate MCTS against the original recursive MCTS. 

● Our model that supports the generation of functions that can accept arguments is the only one to learn QuickSort correctly (red column). It also shows some generalization capabilities.

● In some cases, Approximate MTCS shows to enable convergence by exploring fewer nodes in the search tree. 

Training

Architecture (Approximate) Monte Carlo Tree Search

Code

on GitHub

geektoni/learning_programs
_with_arguments

● The Approximate Monte Carlo Tree Search (A-MCTS) generates the execution traces needed to train the architecture. 

● It runs several simulations of different programs by combining the atomic actions and already learned programs.

● Unlike the original MCTS, in our version, the expansion phase is approximate. 

One of the most challenging goals in designing intelligent systems is to synthesize programs from data. Given requirements in the form of input/output pairs, we want to train a machine 
learning model to discover a compositional program to satisfy those requirements by merging combinatorial search procedures with deep learning. Previous works usually generated 
toy programs using a domain-specific language that did not provide high-level features, such as function arguments. We learn to generate functions that accept arguments, and we show 
the potential of our approach on the task of sorting lists of integers by learning the Quicksort algorithm. 

● We based it on AlphaNPI by Pierrot et al., 2019. We adapted it to the novel setting by adding the Arguments Network module. 

● The modules concur in generating two policies: probability distributions over the program space and arguments space. 

● We use those distributions to decide the next program/arguments pair to execute (e.g., move_pointer_left(pointer_1)).

QuickSort Programs Hierarchy

● We minimize the cross-entropy between the A-MCTS and model  policies under a reinforcement learning setting.

● We employ curriculum learning to learn lower-level programs in the hierarchy first. 

● We also do retraining over failed environments to improve robustness and generalization.

1) Training Accuracy (over all learned programs)

2) Total Nodes Expanded by A-MCTS and MCTS during training

3) Generalization Accuracy on lists of increasing length

def QuickSort(arr, low, high):
   if len(arr) == 1:
       return arr
   if low < high:
       pivot = partition(arr, low, high)
       QuickSort(arr, low, pivot-1)
       QuickSort(arr, pivot+1, high)

1. partition_update()

2. partition()

3. quicksort_update()

4. quicksort()

● We want to learn a hierarchy of 4 programs that can be combined to build the QuickSort algorithm. 

● We learn these programs by exploiting a set of atomic actions that can accept arguments.
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