Synthetic Datasets and Evaluation Tools for Inductive Neural Reasoning

Cristina Cornelio Samsung Al Center – Cambridge Veronika Thost IBM Research/MIT-IBM Watson AI Lab 25-27 Oct. 2021 --- ILP @ IJCLR 2021

Overview - RuDaS

- Logical rules are a popular and compact knowledge ulletrepresentation language in many domains
- Learning rules automatically (ILP) is a very active ulletresearch field and, more recently, extended to neural

Customization

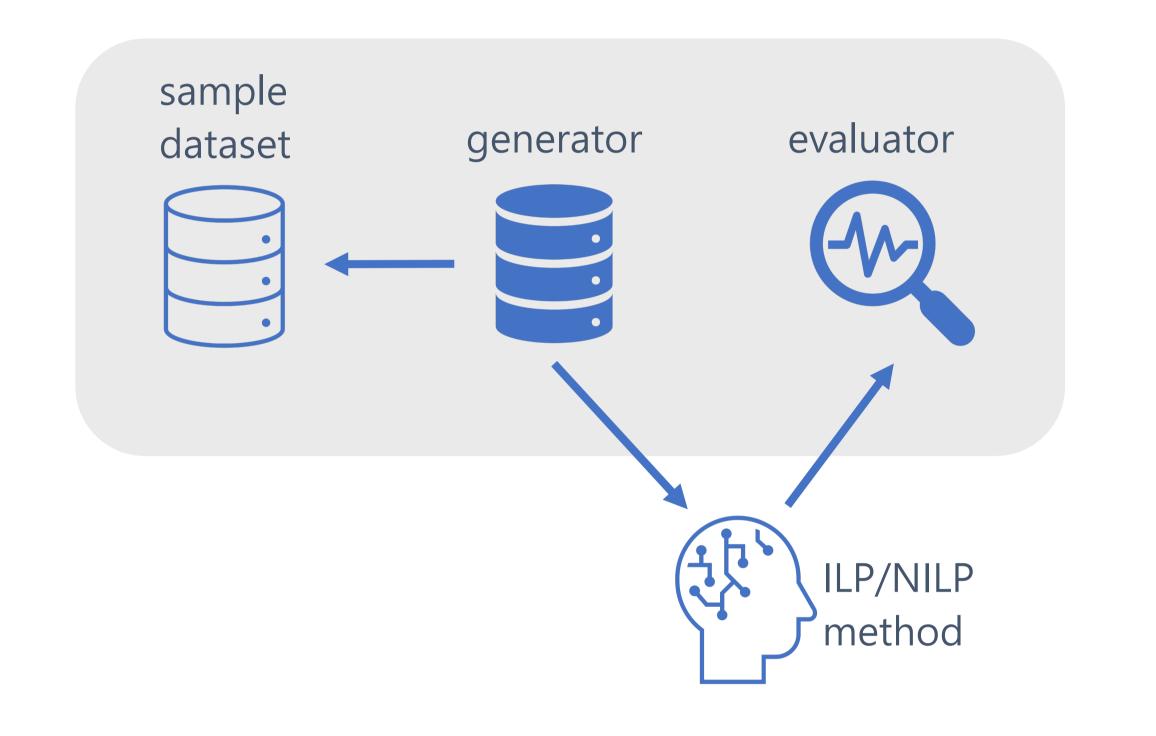
Parameters

- . number of constants
- 2. number of predicates
- 3. number of facts
- 4. consequences of rules (i.e., completeness)

Performance evaluator 1. Accuracy 2. **Precision** (or standard confidence) 3. Recall

systems (NILP)

- **NILP** research area -> **missing adequate datasets** lacksquareand evaluation approaches:
 - only toy dataset lacksquare
 - not cover the various kinds of dependencies ulletbetween rules
 - not allow for testing scalability lacksquare



4. F1-score amount of noise (e.g., wrong or missing facts) 6. type of dependencies between rules maximal number of predicates and constants 8. maximal number of predicates and constants 9. maximal arity of predicates 10.dataset size: XS, S, M, L, XL 11.amount of noise in the data 12.minimal and maximal number of DGs in the rule set 13.category of DGs: Chain, R-DG, DR-DG, Mixed 14.number and maximal length of rules 15.maximal depth of rule graphs 16.evaluation metrics: novel and classic measures $\left(p_8(X_0,X_1)$:- $p_6(X_0,X_2), p_4(X_1,X_0).
ight)$

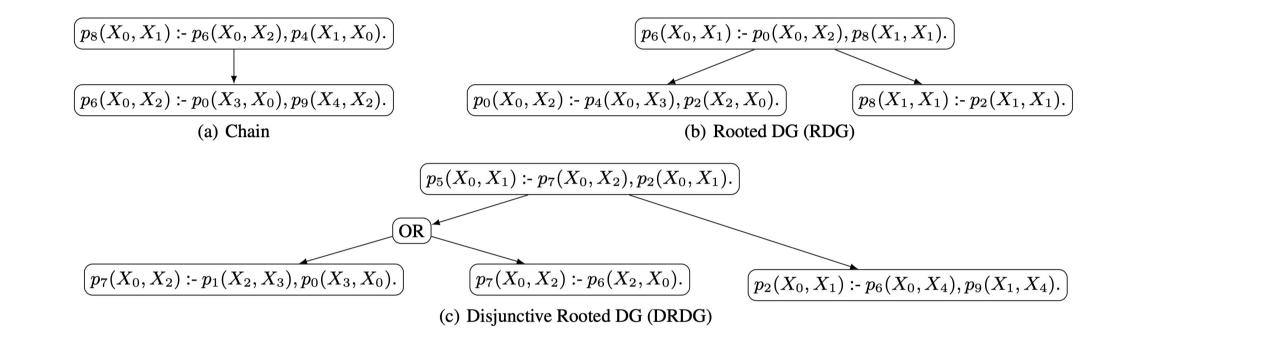
- 5. Herbrand distance: the traditional distance between Herbrand models;
- 6. Herbrand accuracy: Herbrand distance normalized on the Herbrand base

7. Herbrand score or H-score

 $\text{H-score}(\mathcal{R}, \mathcal{R}', \mathcal{F}) := \frac{|I(\mathcal{R}, \mathcal{F}) \cap I(\mathcal{R}', \mathcal{F})|}{|I(\mathcal{R}, \mathcal{F}) \cup I(\mathcal{R}', \mathcal{F})|}$

8. Rule-score: an efficient measure that consider only the induced rules and not the grounded atoms.

 $\operatorname{R-score}(\mathcal{R}, \mathcal{R}') = 1 - \frac{1}{|\mathcal{R}|} \left(\sum_{r_2 \in \mathcal{R}'} \min_{r_2 \in \mathcal{R}'[hp(r_1)]} d_R(r_1, r_2) \right)$



Results

RuDaS (Synthetic **Da**tasets for **Ru**le Learning):

- logic generator for synthetic datasets containing both facts and rules
 - including a pre-generated sample dataset
 - datalog expressivity
- performance evaluator for NILP/ILP systems

Sample Dataset: RuDaS.v0

#	Rule type	Size	Depth	#Rules			#Facts			#Pred			#Const		
11	louie of pe	0120		min	avg	max	min	avg	\max	min	avg	max	min	avg	max
10	CHAIN	\mathbf{S}	2	2	2	2	51	74	95	5	7	9	31	47	71
10	CHAIN	\mathbf{S}	3	3	3	3	49	70	97	7	8	9	31	43	64
10	CHAIN	\mathbf{M}	2	2	2	2	168	447	908	9	10	11	97	259	460
10	CHAIN	\mathbf{M}	3	3	3	3	120	508	958	8	10	11	52	230	374
22	RDG	\mathbf{S}	2	3	3	3	49	84	122	6	9	11	28	50	84
12	RDG	\mathbf{S}	3	4	5	6	56	104	172	8	10	11	41	55	75
22	RDG	\mathbf{M}	2	3	3	3	200	646	1065	6	11	11	71	370	648
22	RDG	\mathbf{M}	3	4	5	$\overline{7}$	280	613	1107	10	11	11	149	297	612
22	DRDG	\mathbf{S}	2	3	4	5	60	100	181	6	9	11	29	55	82
12	DRDG	\mathbf{S}	3	4	7	11	58	144	573	8	10	11	34	58	89
22	DRDG	\mathbf{M}	2	3	4	5	149	564	1027	10	11	11	88	327	621
22	DRDG	Μ	3	4	7	12	111	540	1126	10	11	11	70	284	680

	Rules.									
data	p3(X0,X1) :- p7(X1,X0).									
	p7(X0,X2) :- p6(X0,X1), p6(X1,X2).									
of d	p7(X1,X0) :- p9(X3,X1), p9(X1,X0).									
Ð	Facts.									
du	p9(c127,c381).									
Exa	p6(c324,c291).									
	p3(c363,c354). p7(c61,c96).									

GOAL: demonstrate the need for a portfolio of diverse datasets for evaluating rule learning systems.

We compared:

- **FOIL:** traditional ILP system
- **AMIE+:** rule mining system
- **Neural-LP:** neural approach
- **NTP:** neural approach

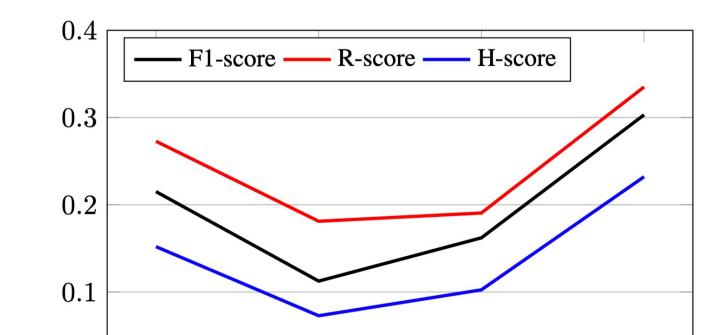
Evaluated on:

- Our sample dataset RuDaS.v0
- Manually created complete dataset: EVEN

Quality of evaluation metrics

• R-score: valid alternative with the advantage of computational efficiency

Neural-LP



NTP

	FOIL	AMIE+	Neural-LP	NTP
H-accuracy	0.9873	0.8498	0.9850	0.9221
Accuracy	0.9872	0.8494	0.9849	0.9219
F1-score	0.2151	0.3031	0.1621	0.1125
H-score	0.1520	0.2321	0.1025	0.0728
Precision	0.5963	0.2982	0.1687	0.1021
Recall	0.2264	0.7311	0.2433	0.3921
R-score	0.2728	0.3350	0.1906	0.1811

Impact of

FOIL

• missi	ng i	nform	ation	and noise			(CHAIN	RDG I	ORDG
• rule s	struc	cture –			 	FOII AMI	E+ (0.3395	0.0877 (0.2275 (0.1293
 scala 	bility	/ (data	aset si	ize)		Neur NTP	(Edd)		0.1050 (0.0538 (
	EVEN	Compl.]	Incompl.	Incompl.+Noise	_		S-2	S-3	M-2	M-3
FOIL	1.0	0.4053	0.1919	0.0849	F	OIL	0.2815	0.2074	0.0356	0.0934
AMIE+	-	0.2021	0.2098	0.2075	A	MIE+	0.1449	0.1319	0.4392	0.2124
Neural-LP	-	0.0633	0.0692	0.0649	N	Neural-LP	0.1155	0.0673	0.1281	0.0992
NTP	1.0	0.0482	0.0617	0.0574	Ν	NTP	0.1512	0.0432	0.0652	0.0374

AMIE+