
Animal AI 
The AAI environment [1] 
comprises of a small arena in 
which various objects can be 
placed to recreate tasks used in 
animal cognition. To simplify the 
environment in order to focus on 
the cognitive abilities being tested, 
the objects are colour coded and 
of relatively few base types e.g. 
walls, ramps and food (reward objects). To complete a task successfully an agent has to 
navigate the environment to collect a predetermined amount of food (reward). 
The testbed consists of 900 tests broken down into categories, roughly corresponding to 
different cognitive skills, such as object permanence or causal reasoning. Many categories are 
incredibly challenging for current SOTA DRL models. For example, the spatial elimination 
category includes 27 tasks, only 7 of which were solved in the competition. These tasks involve 
inferring the only possible location that food could be in (behind an opaque object) and 
directing exploration in that area. These tasks are purposefully designed such that an 

undirected (e.g. random) 
exploration strategy  will fail. 
On the other hand, it is not 
possible to apply symbolic 
learning methods directly to 
the environment due to the 
pixel inputs and low-level 
control provided by the 
action space. 
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Abstract
In this paper we introduce Detect, Understand, Act (DUA), a neuro-symbolic reinforcement learning framework. The Detect component is composed of a tradi@onal computer vision object
detector and tracker. The Act component houses a set of op@ons, high-level ac@ons enacted by pre-trained deep reinforcement learning (DRL) policies. The Understand component provides a
novel answer set programming (ASP) paradigm for symbolically implemen@ng a meta-policy over op@ons and effec@vely learning it using induc@ve logic programming (ILP). We evaluate our
framework on the Animal-AI (AAI) compe@@on testbed, a set of physical cogni@ve reasoning problems. Given a set of pre-trained DRL policies, DUA requires only a few examples to learn a
meta-policy that allows it to improve the state-of-the-art on mul@ple of the most challenging categories from the testbed. DUA cons@tutes the first holis@c hybrid integra@on of computer
vision, ILP and DRL applied to an AAI-like environment and sets the founda@ons for further use of ILP in complex DRL challenges.
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Results
To evaluate DUA+IMP on the AAI testbed
we implemented 9 op:ons and created 7
training arenas. The final meta-policy
learned is displayed below on the right
alongside the results obtained on the
testbed on the leC. We outperform all 60
compe:tors’ submissions on mul:ple of
the most challenging categories. DUA
achieves state-of-the-art results in all the
categories related to the 7 training
arenas, with the excep:on of y-mazes,
where it s:ll outperforms the top 10
average. This suggests that the meta-
policy learned is robust and can
generalise to a variety of cogni:ve
reasoning tasks outside its training
distribu:on.

Learned Meta-Policy
:~ initiate(climb).[-1@11].
:~ danger, initiate(observe), 
on(agent,platform).[-1@10].
:~ initiate(drop(V1)), more_goals(V1).[-
1@9, V1].
:~ initiate(collect), not lava.[-1@8].
:~ initiate(interact(V1)), not danger, 
not on(goal,platform).[-1@7, V1].
:~ initiate(explore(V1)), 
occludes_more(V1,V2).[-1@6, V1, V2].
:~ initiate(explore(V1)), 
occludes(V1).[-1@5, V1].
:~ initiate(avoid).[-1@4].
:~ initiate(balance).[-1@3]
:~ bigger(V1,V2), 
initiate(interact(V1)).[-1@2, V1, V2].
:~ initiate(rotate).[-1@1].

Inductive Meta-Policy learning (IMP) represents the core of our contribution and is our
approach for learning a symbolic meta-policy over. In order to learn a meta-policy, we need to
create a learning from answer sets task. Meta-policy learning happens in three steps:
1. Collect the meta-traces by running the agent in the environment and at each macro-step

randomly picking options to execute πr
meta . We store the meta-traces along with their

respective episode success in the set of tuples T.
2. We abstract each meta-trace: we map the state-option pairs in the meta-traces in T to a set

Ta of tuples including the abstract state-option pairs and associated expected return. This
step finds in T similar state-option pairs and combines them to obtain a value akin to a Q-
value.

3. We map the generated set Ta into a learning from answer set task Ti to learn the meta-
policy π*

meta.

Inductive Meta-Policy Learning
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