
Learning any memory-less discrete semantics for dynamical systems
represented by logic programs

Tony Ribeiro1,3, Maxime Folschette2, Morgan Magnin1,3, Katsumi Inoue3
(1) Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France (2) Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France(3) National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan tony.ribeiro@ls2n.fr, Maxime.folschette@centralelille.fr, morgan.magnin@ls2n.fr, inoue@nii.ac.jp

•Given a set of input/output states of a black-box system, learn its internal mechanics.
•Discrete system: input/output are vectors of same size which contain discrete values.
•Dynamic system: input/output are states of the system and output is the next input.

Input Output? Discrete
State

Discrete
State

Dynamic
System

Problem

•Goal: produce an artificial system with the same behavior, i.e., a digital twin.
•Representation: propositional logic programs encoding multi-valued discrete variables.
•Method: learn the dynamics of a system from its state transitions.

Digital
Twin

Real
System

00

10

01

11

20

22

12

2102

00

10

01

11

20

22

12

2102

? 00

10

01

11

20

22

12

2102

00

10

01

11

20

22

12

2102

a(0,T) :- a(2,T-1)
a(1,T) :- a(0,T-1), b(0,T-1).
a(2,T) :- a(1,T-1)
a(2,T) :- a(0,T-1), b(2,T-1).

b(0,T) :- a(1,T-1).
b(1,T) :- b(0,T-1).
b(2,T):- b(2,T-1).

DATA

RESULTS

Goal

Motivations: Learning Dynamics

Definition 1 (Atoms). Let V = {v1, . . . , vn} be a finite set of n ∈ N variables, and dom : V → N.
The atoms of MVL (denoted A) are of the form vval where v ∈ V and val ∈ J0; dom(v)K.
Definition 2 (Multi-valued logic program). A MVLP is a set of MVL rules:

vval00︸︷︷︸
head

← vval11 ∧ vval22 ∧ vval33 ∧ · · · ∧ vvalmm︸ ︷︷ ︸
body

Definition 3 (Dynamic MVLP). Let T ⊂ V and F ⊂ V such that F = V \ T . A DMVLP P is
a MVLP such that ∀R ∈ P, var(head(R)) ∈ T and ∀vval ∈ body(R), v ∈ F .
Definition 4 (Discrete state). A discrete state s on T (resp. F) of a DMVLP is a function
from T (resp. F) to N. ST (resp. SF) denote the set of all discrete states of T (resp. F).
Definition 5 (Transition). A transition is a couple of states (s, s′) ∈ SF × ST .
Definition 6 (Semantics). A dynamical semantics is a function DMVLP→ (SF → ℘(ST)\{∅})
where DMVLP is the set of DMVLPs and ℘ is the power set symbol.

•R1 dominates R2, written R1 ≥ R2, if head(R1) = head(R2) and body(R1) ⊆ body(R2).
•R matches s ∈ SF , written R u s, if body(R) ⊆ s.
•R realizes the transition (s, s′) ∈ SF × ST , if R u s and head(R) ∈ s′.
•R conflicts with T ⊆ SF × ST if ∃(s, s′) ∈ T ,

(
R u s ∧ ∀(s, s′′) ∈ T , head(R) /∈ s′′

).
Definition 7 (Suitable program). Let T ⊆ SF ×ST . A DMVLP P is suitable for T when: P is
complete, consistent with T , realizes T and ∀R not conflicting with T , ∃R ′ ∈ P s.t. R ≥ R ′.
If, in addition, ∀R ∈ P , all the rules R ′ belonging to a MVLP suitable for T are such that
R ≥ R ′ implies R ′ ≥ R , then P is unique, called optimal and denoted PO(T).

Formalization: MVL and DMVLP

Semantics decide the target states according to a DMVLP and a feature state.

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

000 010DMVLP
Rules

Dynamics
Semantics

001

100

16 Tony Ribeiro et al.

010 {a1
t , b

1
t , ch

0, ch2}+ 012

{a0
t , a

1
t , b

0
t , b

1
t , ch

2}010

002 102

+

Feature state Set of atoms
Set of target states

s D
DS

s D�

DS
Union

Semantics

Fig. 3: Example of a pseudo-idempotent semantics DS.

– When provided with a set of transitions, for instance by using a dynamical
semantics, one can describe dynamical paths, that is, successions of next
states, by using each next state to generate the equivalent initial state for
the next transition;

– Some dynamical semantics (such as the asynchronous one, see Defini-
tion 16) make use of the current state to build the next state, and as
such need a way to convert target variables into feature variables.

However, such a projection cannot be defined on the whole sets of target
(T) and feature (F) variables, but only on two subsets F ⊆ F and T ⊆ T .
Note that we require the projection to be a bijection, thus: |F| = |T |. These
subsets T and F contain variables that we call afterwards regular variables :
they correspond to variables that have an equivalent in both the initial states
(at t − 1) and the next states (at t). Variables in F \ F can be considered
as stimuli variables: they can only be observed in the previous state but we
do not try to explain their next value in the current state; this is typically
the case of external stimuli (sun, stress, nutriment...) that are unpredictable
when observing only the studied system. Variables in T \ T can be considered
as observation variables: they are only observed in the present state as the
result of the combination of other (regular and stimuli) variables; they can be
of use to assess the occurrence of a specific configuration in the previous state
but cannot be used to generate the next step. For the rest of this section,
we suppose that F and T are given and that there exists such projection
functions, as given by Definition 14. Figure 4 gives a representation of these
sets of variables.

It is noteworthy that projections on states are not bijective, because of
stimuli variables that have no equivalent in target variables, and observation
variables that have no equivalent in feature variables (see Figure 4). Therefore,
the focus is often made on regular variables (in F and T). Especially, for any
pair of states (s, s�) ∈ SF × ST , having spT →F (s�) ⊆ s, which is equivalent to
spF→T (s) ⊆ s�, means that the regular variables in s and their projection in
s� (or conversely) hold the same value, modulo the projection.

A semantics that produce the same states, when being given the atoms of its owndecision is pseudo-idempotent and is compatible with optimal DMVLP.

Dynamics

Definition 8 (Pseudo-idempotent Semantics). Let DS be a dynamical semantics. DS is said
pseudo-idempotent if, for all P a DMVLP: DS(PO(DS(P))) = DS(P) .

Problem: Dynamical Semantics

Definition 9 (Rule least specialization). Let R be a MVL rule and s ∈ SF such that R u s.
The least specialization of R by s according to F and A is:

Lspe(R, s,A,F) := {head(R)← body(R) ∪ {vval} |v ∈ F ∧ vval ∈ A ∧ vval 6∈ s ∧ ∀val′ ∈ N, vval′ 6∈ body(R)}.
∀T ⊆ SF × ST , we denote: first(T) := {s ∈ SF | ∃(s1, s2) ∈ T , s1 = s}.
Definition 10 (Program least revision). Let P be a DMVLP, s ∈ SF and T ⊆ SF × ST such
that first(T) = {s}. Let RP := {R ∈ P | R conflicts with T}. The least revision of P by T
according to A and F is Lrev(P, T ,A,F) := (P \ RP) ∪⋃

R∈RP

Lspe(R, s,A,F).
Algorithmic properties:
•PO(∅) = {vval← ∅ | v ∈ T ∧ vval ∈ A}.
• Let s ∈ SF and T , T ′ ⊆ SF × ST such that |first(T ′)| = 1 ∧ first(T) ∩ first(T ′) = ∅.

Lrev(PO(T), T ′,A,F) is a DMVLP suitable for T ∪ T ′.
• If P is a DMVLP suitable for T , then PO(T) = {R ∈ P | ∀R ′ ∈ P, R ′ ≥ R =⇒ R ′ = R}.

Idea: Starting from P = PO(∅) we group transitions by common feature state (T ′) anditeratively revise P using Lrev(P, T ′,A,F) and domination relation to obtain PO(T).

00 01

00 10

00 11

10 1000 00

Positive
examples

Negative
examples

a=0

00

11 01

11 10

11 00

01

10

11

Observations

01 01 11 11

• Nega0
t
= {{a0

t−1, b0
t−1}, {a1

t−1, b0
t−1}}, Pa0

t
= {a0

t ← ∅}
neg ∈ Nega0

t
M Least specializations Pa0

t(a0
t−1, b0

t−1) {a0
t ← ∅} {a0

t ← a1
t−1, a0

t ← b1
t−1} {a0

t ← a1
t−1, a0

t ← b1
t−1}(a1

t−1, b0
t−1) {a0

t ← a1
t−1} {a0

t ← a1
t−1 ∧ b1

t−1.} {a0
t ← b1

t−1}
• Nega1

t
= {{a0

t−1, b1
t−1}, {a1

t−1, b1
t−1}}, Pa1

t
= {a1

t ← ∅}
neg ∈ Nega1

t
M Least specializations Pa1

t(a0
t−1, b1

t−1) {a1
t ← ∅} {a1

t ← a1
t−1, a1

t ← b0
t−1} {a1

t ← a1
t−1, a1

t ← b0
t−1}(a1

t−1, b1
t−1) {a1

t ← a1
t−1} {a1

t ← a1
t−1 ∧ b0

t−1} {a1
t ← b0

t−1}
• Negb0

t
= {{a0

t−1, b1
t−1}, {a0

t−1, b0
t−1}}, Pb0

t
= {b0

t ← ∅}
neg ∈ Negb0

t
M Least specializations Pb0

t(a0
t−1, b1

t−1) {b0
t ← ∅} {b0

t ← a1
t−1, b0

t ← b0
t−1} {b0

t ← a1
t−1, b0

t ← b0
t−1}(a0

t−1, b0
t−1) {b0

t ← b0
t−1} {b0

t ← a1
t−1 ∧ b0

t−1} {b0
t ← a1

t−1}
• Negb1

t
= {{a1

t−1, b0
t−1}, {a1

t−1, b1
t−1}}, Pb1

t
= {b1

t ← ∅}
neg ∈ Negb1

t
M Least specializations Pb1

t(a1
t−1, b0

t−1) {b1
t ← ∅} {b1

t ← a0
t−1, b1

t ← b1
t−1} {b1

t ← a0
t−1, b1

t ← b1
t−1}(a1

t−1, b1
t−1) {b1

t ← b1
t−1} {b1

t ← a0
t−1 ∧ b1

t−1} {b0
t ← a1

t−1}We extract positive and negatives examples (feature states) of each target atomoccurrence. A rule that matches a negative example conflict with the observations.

GULA

Algorithm: GULA

Definition 11 (Constrained DMVLP). Let P ′ be a DMVLP on A, F and T two sets of
variables, and ε a special variable with dom(ε) = 1 so that ε /∈ T ∪ F . A CDMVLP P is a
MVLP such that P = P ′ ∪ {R ∈MVL | head(R) = ε1 ∧ ∀vval ∈ body(R), v ∈ F ∪ T }. A rule
R such that head(R) = ε1 and ∀vval ∈ body(R), v ∈ F ∪ T is called a MVL constraint.
Definition 12 (Constraint-transition matching). Let (s, s′) ∈ SF × ST . The constraint C
matches (s, s′), written C u (s, s′), iff body(C) ⊆ s ∪ s′.
Definition 13 (Suitable and optimal constraints). Let T ⊆ SF×ST . A set ofMVL constraints
SC is suitable for T when: SC is consistent with T , complete with T and for all constraints
C not conflicting with T , there exists C ′ ∈ P such that C ′ ≥ C . If in addition, for all C ∈ SC ,
all the constraint rules C ′ belonging to a set of constraints suitable for T are such that
C ′ ≥ C implies C ≥ C ′, then SC is called optimal, is unique and denoted CO(T).
Definition 14 (Synchronous constrained Semantics). The synchronous constrained semantics
Tsyn−c is defined by:

Tsyn−c : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ {head(R) ∈ A | R ∈ P, R u s} ∧
@C ∈ P, head(C) = ε1 ∧ C u (s, s′)}

Negative examples

Constraints

0011 0101

1010

Observations

1100

11 1100 00 0000 1111

01 01 11 00

00 11 10 10

Title Suppressed Due to Excessive Length 31

00

01 10

11

00

01 10

11

00

01 10

11

// a := not b

a0
t ← b1t−1

a1
t ← b0t−1

// b := not a

b0t ← a1
t−1

b1t ← a0
t−1

// Stability rules

a0
t ← a0

t−1

a1
t ← a1

t−1

b0t ← b0t−1

b1t ← b1t−1

// Constraints
⊥←− a0

t , b1t , b0t−1
⊥←− a1

t , b0t , a0
t−1

⊥←− a1
t , b0t , b1t−1

⊥←− a0
t , b1t , a1

t−1

// a := not b

a0
t ← b1t−1

a1
t ← b0t−1

// b := not a

b0t ← a1
t−1

b1t ← a0
t−1

// Stability rules

a1
t ← a1

t−1

b1t ← b1t−1

// Degradation

a0
t ← a1

t−1

b0t ← b1t−1

// Constraints
⊥←− a1

t , b1t , a1
t−1

⊥←− a1
t , b1t , b1t−1

// a := not b

a0
t ← b1t−1

a1
t ← b0t−1

// b := not a

b0t ← a1
t−1

b1t ← a0
t−1

// Inverse value

a0
t ← a1

t−1

a1
t ← a0

t−1

b0t ← b1t−1

b1t ← b0t−1

// Constraints
⊥←− a1

t , b1t , a1
t−1

⊥←− a0
t , b0t , a0

t−1
⊥←− a1

t , b1t , b1t−1
⊥←− a0

t , b0t , b0t−1

Fig. 7: States transitions diagrams corresponding to three semantics that do
not respect Theorem 1 (in black) applied on the Boolean network of Figure 5.
Using the synchronous semantics on the optimal program of the black transi-
tions will produce in addition the red ones. Below each diagram, a CDMVLP
that can reproduce the same behavior using synchronous constrained seman-
tics.

Therefore, a constraint is consistent if it does not match any transitions of
T .

Definition 24 (Complete set of constraints) A set of constraints SC is
complete with a set of transitions T if ∀(s, s�) ∈ SF × ST , (s, s�) �∈ T =⇒
∃C ∈ SC, C � (s, s�).

Definition 25 groups all the properties that we want the learned set of
constraints to have: suitability and optimality, and Proposition 4 states that
the optimal set of constraints of a set of transitions is unique.

Definition 25 (Suitable and optimal constraints) Let T ⊆ SF × ST . A
set of MVL constraints SC is suitable for T when:

– SC is consistent with T ,
– SC is complete with T ,
– for all constraints C not conflicting with T , there exists C � ∈ P such that

C � ≥ C.

If in addition, for all C ∈ SC, all the constraint rules C � belonging to a set of
constraints suitable for T are such that C � ≥ C implies C ≥ C �, then SC is
called optimal.

Negative examples of constraints are theobserved transitions. GULA can be usedto learn constraint with this simple trick.

Synchronizer

Let T ⊆ SF × ST , it holds that T = Tsyn−c(PO(T) ∪ CO(T)), i.e., any semantics is captured.

Learning From Any Semantics Using Constraints

•Previous works: Synchronous deterministic transitions only [1-3].
•Novelty: Learn from any memory-less discrete dynamical semantics.
• Application: The selection of a dynamical semantics, which has a major impact when tryingto model a system, can now be done a posteriori. The rules can explain local interactionsand constraint are hints of the behavior of the original semantics.
•Weakness: The current complete method is too costly/sensitive to deal with real systems.
•Outlook: Development of heuristic approaches (WDMVLP , PRIDE, ...) totackle real data and tools (see other poster) to extract knowledge from thelearned models.
• The source code is available as open source on Github. See QR-code −→

Contributions

[1] Tony Ribeiro, Sophie Tourret, Maxime Folschette, Morgan Magnin, Domenico Borzacchiello, Francisco Chinesta, Olivier Roux, Katsumi Inoue. Inductive Learning from State Transitions over Continuous Domains, The 27th International Conference on Inductive Logic Programming,(ILP 2017), Orléans, France.[2] Tony Ribeiro, Katsumi Inoue. Learning Prime Implicant Conditions From Interpretation Transition, Inductive Logic Programming: Revised and Selected Papers from the 24th International Conference on Inductive Logic Programming, (ILP 2014), pages 108-125, Nancy, France.
Lecture Notes in Artificial Intelligence, Springer.[3] Katsumi Inoue, Tony Ribeiro, Chiaki Sakama. Learning from Interpretation Transition, Machine Learning Journal, volume 94, issue 1, pages 51-79.

https://hal.archives-ouvertes.fr/hal-02925942
https://github.com/Tony-sama/pylfit

