Polynomial Algorithm For Learning From Interpretation Transition

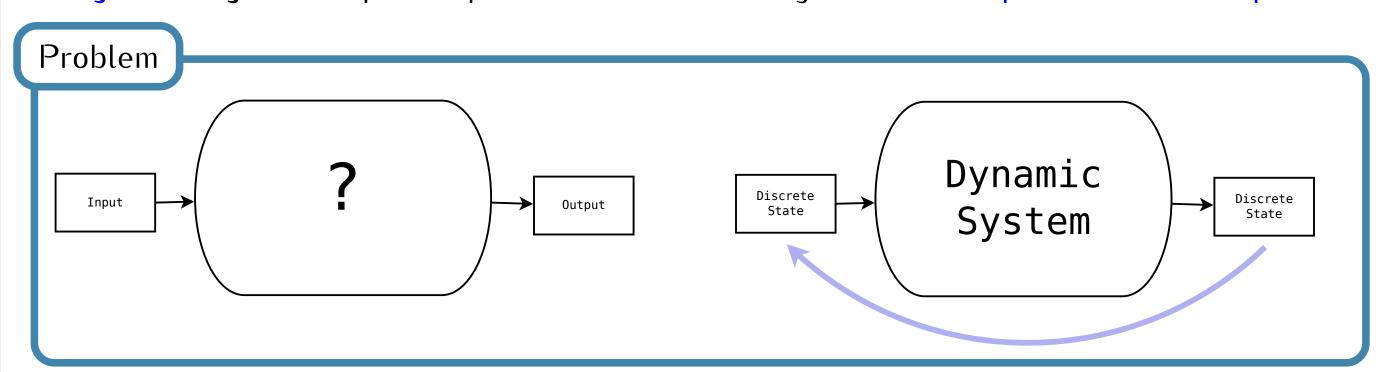
Tony Ribeiro^{1,3}, Maxime Folschette², Morgan Magnin^{1,3}, Katsumi Inoue³

(1) Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France (2) Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

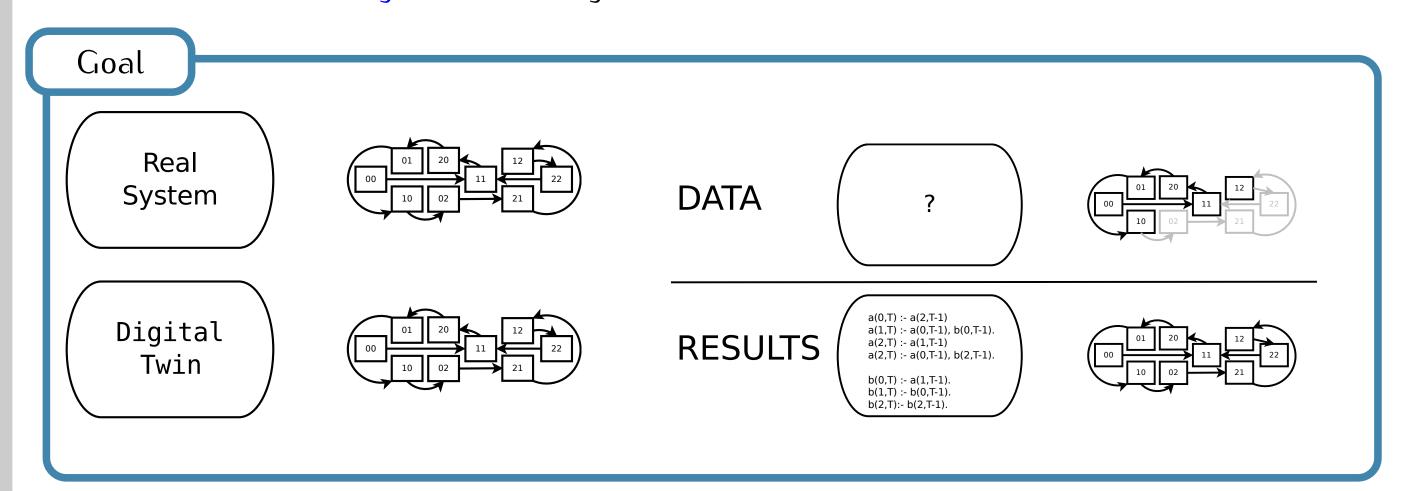
tony.ribeiro@ls2n.fr, maxime.folschette@centralelille.fr, morgan.magnin@ls2n.fr, inoue@nii.ac.jp

Motivations: Learning Dynamics

- Given a set of input/output states of a black-box system, learn its internal mechanics.
- Discrete system: input/output are vectors of same size which contain discrete values.
- Dynamic system: input/output are states of the system and output is the next input.



- Goal: produce an artificial system with the same behavior, i.e., a digital twin.
- Representation: propositional logic programs encoding multi-valued discrete variables.
- Method: learn the dynamics of a system from its state transitions.



Algorithm: PRIDE

Theorem 1 (Consistent Rule Always exists). Let $T \subseteq \mathcal{S}^{\mathcal{F}} \times \mathcal{S}^{\mathcal{T}}$, $(s, s') \in T$ and $v^{val} \in s'$. The rule $R = v^{val} \leftarrow s$ is consistent with T and realizes (s, s').

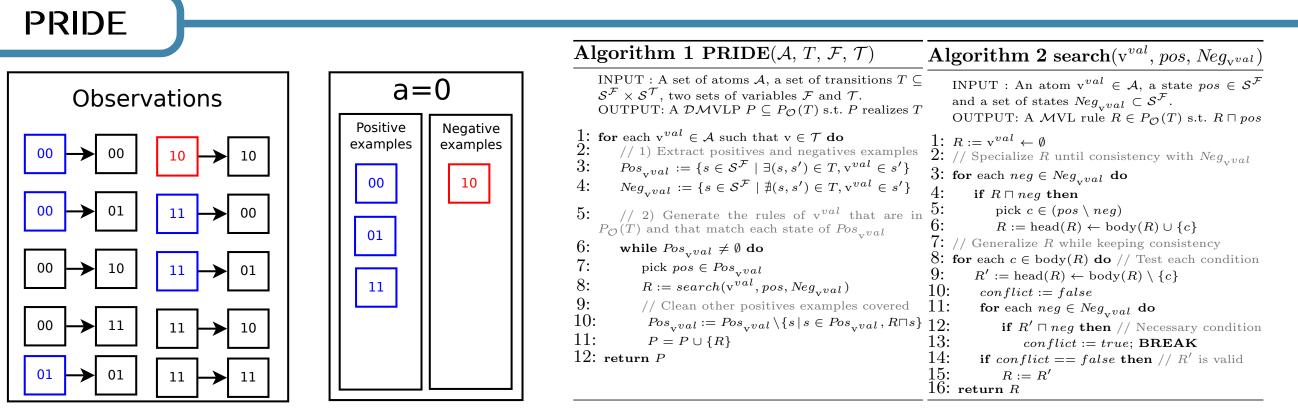
Theorem 2 (Irreducible Rules are Optimal). Let R be a rule consistent with a set of transitions $T \subseteq \mathcal{S}^{\mathcal{F}} \times \mathcal{S}^{\mathcal{T}}$. If $\forall R' \in \{ \text{head}(R) \leftarrow \text{body}(R) \setminus \{ v^{val} \} \mid v^{val} \in \text{body}(R) \}$, R' conflicts with T, then $\nexists R'' \neq R$ consistent with T such that $R'' \geq R$ and thus, $R \in P_{\mathcal{O}}(T)$.

ldea:

- ullet Consider positives/negatives examples of occurrence of a target atom \mathbf{v}^{val} in T
- We can find a rule $R \in P_{\mathcal{O}}(T)$ to explain each positive example s
- Starting from $v^{val} \leftarrow s$, remove body atoms until conflict is not avoidable

Algorithmic properties:

- It is faster to start from $v^{val} \leftarrow \emptyset$: specialise it until consistency and then generalise
- Adding only the atoms of s ensures to matches s, in the worst case we obtain $v^{val} \leftarrow s$
- The more variables in the system, the more generalization is avoided



We extract positive and negatives examples (feature states) of each target atom occurrence. Rules should match a positive and no negative while being irreducible.

Formalization: $\mathcal{M}VL$ and $\mathcal{D}\mathcal{M}VLP$

head

Definition 1 (Atoms). Let $V = \{v_1, \dots, v_n\}$ be a finite set of $n \in \mathbb{N}$ variables, and dom: $V \to \mathbb{N}$. The <u>atoms</u> of MVL (denoted A) are of the form v^{val} where $v \in V$ and $val \in [0; dom(v)]$. **Definition 2** (Multi-valued logic program). A MVLP is a set of MVL rules:

$$\underbrace{v_0^{\mathsf{val}_0}}_{0} \leftarrow \underbrace{v_1^{\mathsf{val}_1} \wedge v_2^{\mathsf{val}_2} \wedge v_3^{\mathsf{val}_3} \wedge \cdots \wedge v_m^{\mathsf{val}_m}}_{0}$$

Definition 3 (Dynamic $\mathcal{M}VLP$). Let $\mathcal{T} \subset \mathcal{V}$ and $\mathcal{F} \subset \mathcal{V}$ such that $\mathcal{F} = \mathcal{V} \setminus \mathcal{T}$. A $\mathcal{D}\mathcal{M}VLP$ P is a $\mathcal{M}VLP$ such that $\forall R \in P$, var(head(R)) $\in \mathcal{T}$ and $\forall v^{val} \in body(R)$, $v \in \mathcal{F}$.

Definition 4 (Discrete state). A <u>discrete state</u> s on \mathcal{T} (resp. \mathcal{F}) of a \mathcal{DMVLP} is a function from \mathcal{T} (resp. \mathcal{F}) to \mathbb{N} . $\mathcal{S}^{\mathcal{T}}$ (resp. $\mathcal{S}^{\mathcal{F}}$) denote the set of all discrete states of \mathcal{T} (resp. \mathcal{F}).

Definition 5 (Transition). A <u>transition</u> is a couple of states $(s, s') \in \mathcal{S}^{\mathcal{F}} \times \mathcal{S}^{\mathcal{T}}$. **Definition 6** (Semantics). A <u>dynamical semantics</u> is a function $\mathcal{DMVLP} \to (\mathcal{S}^{\mathcal{F}} \to \wp(\mathcal{S}^{\mathcal{T}}) \setminus \{\emptyset\})$ where \mathcal{DMVLP} is the set of \mathcal{DMVLPs} and \wp is the power set symbol.

- R_1 dominates R_2 , written $R_1 \ge R_2$, if $head(R_1) = head(R_2)$ and $body(R_1) \subseteq body(R_2)$.
- $R \text{ matches} \ s \in \mathcal{S}^{\mathcal{F}}$, written $R \sqcap s$, if $body(R) \subseteq s$.
- R realizes the transition $(s,s') \in \mathcal{S}^{\mathcal{F}} \times \mathcal{S}^{\mathcal{T}}$, if $R \sqcap s$ and $head(R) \in s'$.
- R conflicts with $T \subseteq \mathcal{S}^{\mathcal{F}} \times \mathcal{S}^{\mathcal{T}}$ if $\exists (s, s') \in T, (R \sqcap s \land \forall (s, s'') \in T, head(R) \notin s'')$.

Definition 7 (Suitable program). Let $T \subseteq \mathcal{S}^{\mathcal{F}} \times \mathcal{S}^{\mathcal{T}}$. A \mathcal{DMVLP} P is <u>suitable</u> for T when: P is <u>complete</u>, <u>consistent</u> with T, <u>realizes</u> T and $\forall R$ not conflicting with T, $\exists R' \in P$ s.t. $R \geq R'$. If, in addition, $\forall R \in P$, all the rules R' belonging to a \mathcal{MVLP} suitable for T are such that $R \geq R'$ implies $R' \geq R$, then P is <u>unique</u>, called <u>optimal</u> and denoted $P_{\mathcal{O}}(T)$.

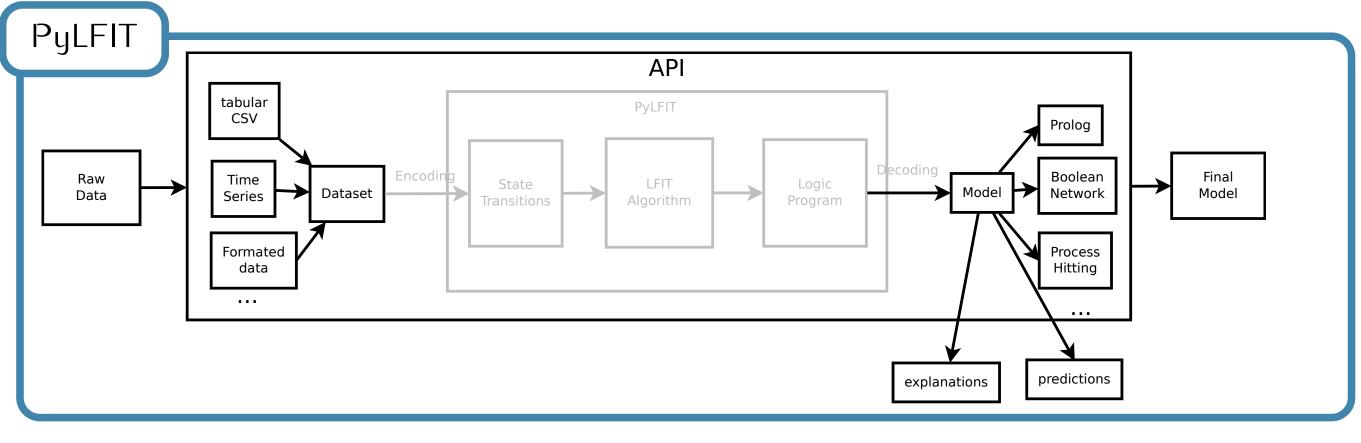
Implementation: Python Library and User API

PyLFIT Library

- Open source Python library: pip install pylfit
- Contains all LFIT algorithms and a simple user API
- Built-in data/model conversion/usage

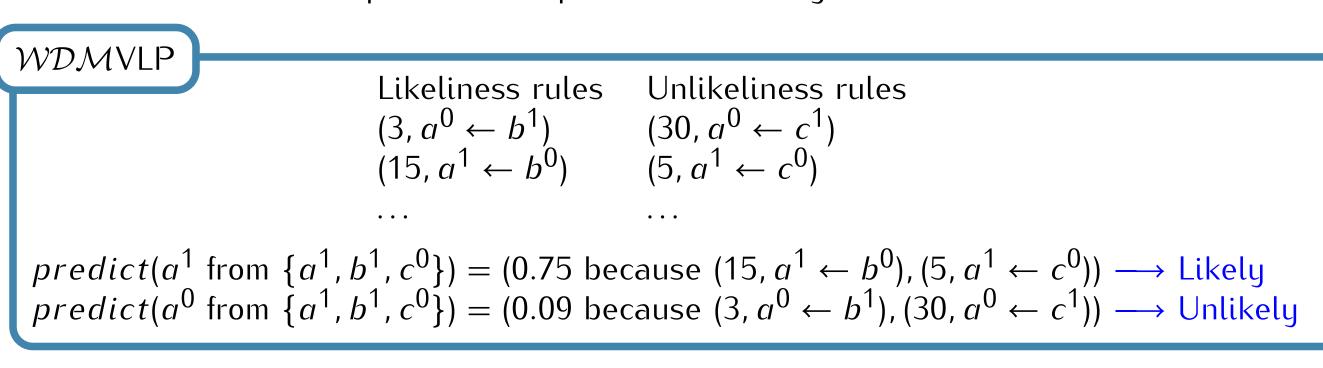
User API

- Load raw data from different formats into a Dataset object
- Choose desired model type and run corresponding LFIT algorithm
- Use model object for predictions and analysis, or convert it to other formats



Predictions:

- ullet \mathcal{DM} VLP and \mathcal{CDM} VLP (constraints) can be used to predict possible target states
- $ullet \mathcal{WDM} VLP$ models both possibility and impossibility, it also adds weights to rules w.r.t. observations to allow probabilistic predictions of target atom occurrence in a transition



• The API provides metrics to evaluate prediction accuracy and quality of explanation rules

Problem: Combinatorial Explosion

GULA and PRIDE:

- In [2] we proposed an Algorithm (GULA) to learn $P_{\mathcal{O}}(T)$ but with exponential complexity.
- We introduce the heuristic algorithm PRIDE which trades the completeness of GULA for a polynomial complexity. PRIDE learns a subset of $P_{\mathcal{O}}(T)$ that is sufficient to realize T.

Run Time

System variables (n)	7	9	10	12	13	15	18	23
GULA run time	0.027s	0.157s	0.49s	2.62s	5.63s	T.O.	T.O.	T.O.
PRIDE run time	0.005s	0.02s	0.06s	0.37s	0.484s	1.55s	6.39s	32.43s

Average run time of **GULA** and **PRIDE** when learning Boolean networks of PyBoolNet [3] from at most 10,000 transitions with a time-out (T.O.) of 1,000 seconds.

PRIDE performances allow to learn more complex systems and drastically reduce computation time on smaller ones.

Summary

- The polynomiality of **PRIDE** is obtained at the cost of completeness over $P_{\mathcal{O}}(T)$.
- Still, the program learned can reproduce all observations and provides minimal explanation for each of them in the form of optimal rules.
- The source code is available as open source on github and pypi.org (see QR code).
- A user-friendly API allows to easily use LFIT algorithms on different kinds of datasets and is already being used in several research collaborations [4].

- [2] Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, Katsumi Inoue: Learning dynamics with synchronous and general semantics. In: International Conference on Inductive Logic Programming. pp. 118–140. Springer (2018) [3] Hannes Klarner, Adam Streck, Heike Siebert: PyBoolNet: a Python package for the generation, analysis and visualization of Boolean networks. *Bioinformatics* 33(5), 770–772 (2016).
- [3] Hannes Klamer, Adam Streck, Helke Stebert: Pybootinet: a Python package for the generation, analysis and visualization of boolean networks. Bioinformatics 33(3), 770–772 (2010). [4] Alfonso Ortega, Julian Fiérrez, Aythami Morales, Zilong Wang, Tony Ribeiro: Symbolic Al for XAI: Evaluating LFIT Inductive Programming for Fair and Explainable Automatic Recruitment. WACV (Workshops) 2021: 78-87