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1. Motivation

➢ Problem: You have deployed a multi-label classification system based on 
Neural Networks, and now you would like the system to also predict a new label.

➢ Standard solution: annotate the dataset including the new label

➢ Our solution: incorporate prescriptive logical rules into the existing model.

➢ Benefits: avoid the expensive and time-consuming effort of annotating the data 
every time the prediction of a new label is required

➢ To our knowledge, this type of framework has not been applied to the 
fully-unsupervised problem of unseen-labels prediction.

Can we extend a system to predict a new label without any additional 
data and without degrading the existing system?

A Dialog State Tracker predicts the user’s intent (state) at any point of an ongoing 
conversation.

For example: 

- User: Hi, can you help me find a place to eat on the north side?
True State: {restaurant-area-north}
System: Yes, we have 15 options, any preferences for price range?

- User: Yes, are there any expensive ones?
True state: {restaurant-area-north, restaurant-pricerange-expensive}
System: There are 2 expensive places, both Italian. 
...

MultiWOZ 2.0 dataset  [1] 

➢ 9855 dialogues
➢ 663 different domain-slot-value triplets: 

○ distributed across 27 slots (food, area,  price range, etc.) in 5 domains 
(restaurant, hotel, attraction, train, taxi)

Multi-domain Neural Belief State Tracker [2]

Multi-layer networks with RNNs to model the user and system utterances, and the 
flow of the conversation.
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Antecedent and consequent learning in Implication

𝑅1: IF the user said a word like expensive AND also a word like hotel THEN 
predict {hotel-pricerange-expensive}

𝑅2: IF the previous prediction contains {hotel-pricerange-expensive} AND the 
user did NOT said a word like moderate AND did NOT said a word like cheap 
THEN predict  {hotel-pricerange-expensive}

For example if X=1 and Y=0 (the implication is not satisfied)

Thus, the network will update parameters in the direction of growth of Y and 
in the direction of decrease of X.
In rules of the form R2 we avoid the learning through the antecedent by using 
non-derivable functions
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We use a simple posterior regularization approach to introduce the rules into the 
learning process
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5. Experiment

➢ We implemented rules of the form R1 and R2 for all the six possible 
combinations of domains (hotel and restaurant) and price ranges (cheap, 
moderate and expensive).

➢ We tested if this method allows the prediction of a new label by 
simulating an scenario in which we removed all existing annotations for 
the price range slot in the training set. 

➢ We evaluated the performance of our model to predict the price range 
slot on the test set (which does have price range labels)

➢ For the remaining slots, we compared the performance of our rule-based 
model with a model trained in the same data and no rules. Here we 
tested if the addition of rules degrade the prediction capabilities over the 
rest of the labels

➢ In all evaluations, we used F1 score, measured by considering the 
correct and incorrect predictions in each slot of each domain.
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➢ There is a non-zero predictive capacity in the price range slot (left panel) for 
all rules-weight (w) values

➢ There is no performance degradation for the rest of the slots (right panel) for 
low rules-weight values (𝑤 =10, 30) (𝑝-val>0.1). While values of w greater 
than 30 produce a notable decrease in the general performance (𝑝-val = 0.06 
and 𝑝-val= 0.004 respectively)

➢ We show that it is possible to integrate rules into an existing system to allow 
the prediction of unseen labels (zero-shot learning) without degrading the 
predictive capabilities over the rest of the labels (as it is the case with 𝑤 =30)

➢ It is necessary to pay special attention to the trade-off that is generated 
between learning the rules and the degradation of the system

➢ Our rules-based solution is independent of the neural network model and thus 
can be applied to any application (and neural network model) given the 
formulation of appropriate rules.
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