Zero-shot Multi-Domain Dialog State Tracking Using Prescriptive Rules

SRI International[®]

1. Motivation

- > Problem: You have deployed a multi-label classification system based on Neural Networks, and now you would like the system to also predict a new label.
- Standard solution: annotate the dataset including the new label
- > Our solution: incorporate prescriptive logical rules into the existing model.
- > Benefits: avoid the expensive and time-consuming effort of annotating the data every time the prediction of a new label is required
- \succ To our knowledge, this type of framework has not been applied to the fully-unsupervised problem of unseen-labels prediction.

Can we extend a system to **predict a new label without** any **additional** data and without degrading the existing system?

2. Multi-Domain Dialog State Tracker

A Dialog State Tracker predicts the user's intent (state) at any point of an ongoing conversation.

For

- User: Hi, can you help me find a place to eat on the north side? True State: {restaurant-area-north} **System:** Yes, we have 15 options, any preferences for price range?
- **User:** Yes, are there any expensive ones? **True state:** {restaurant-area-north, restaurant-pricerange-expensive} System: There are 2 expensive places, both Italian. • • •

MultiWOZ 2.0 dataset [1]

> 9855 dialogues

- **→** 663 different domain-slot-value triplets:
 - distributed across 27 slots (food, area, price range, etc.) in 5 domains (restaurant, hotel, attraction, train, taxi)

Multi-domain Neural Belief State Tracker [2]

Multi-layer networks with RNNs to model the user and system utterances, and the flow of the conversation.

Edgar Altszyler^{* 1}, Pablo Brusco^{*2}, Nikoletta Basiou^{†3}, John Byrnes⁴ and Dimitra Vergyri⁴

¹ Instituto de Investigación en Ciencias de la Computación, CONICET-UBA, Argentina

²ASAPP, USA

³Amazon, Alexa-AI

⁴ SRI International, USA

*These authors contributed equally to this work. This work was performed while the authors were still at SRI. [†]Work done prior to joining Amazon.

3. Rules definition

 R_1 : IF the user said a word like expensive AND also a word like hotel THEN predict {hotel-pricerange-expensive}

 R_2 : IF the previous prediction contains {hotel-pricerange-expensive} AND the user did NOT said a word like moderate AND did NOT said a word like cheap **THEN** predict {hotel-pricerange-expensive}

Logical Operators

NOT	$ eg X =_{def} 1 - X,$
AND	$X \wedge Y =_{def} X \cdot Y,$
OR	$X \lor Y =_{def} \neg (\neg X \land \neg Y)$
IMPLICATION	$X o Y =_{def} eg(X \wedge eg Y) =$

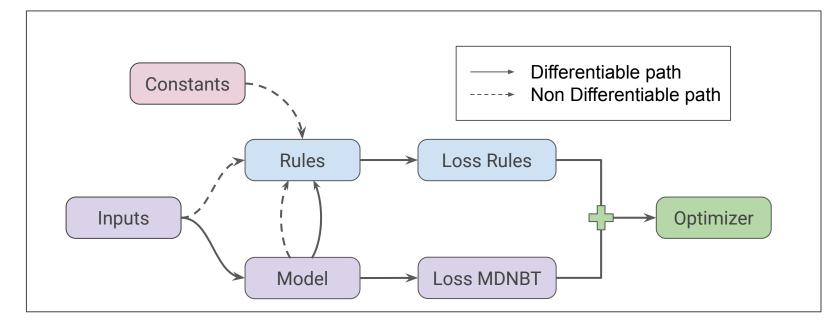
 $R_1: (In_{thresh=c}(utt, ext{EXPENSIVE}) \land In_{thresh=c}(utt, ext{HOTEL}))
ightarrow$ $Assert(b_t, HOTEL-PRICERANGE-EXPENSIVE)$

 $R_2: Assert(b_{t-1}, ext{HOTEL-PRICERANGE-EXPENSIVE}) \land$ $\neg (In_{thresh=c}(utt, \text{MODERATE}) \land \neg (In_{thresh=c}(utt, \text{CHEAP}) \rightarrow$ $Assert(b_t, HOTEL-PRICERANGE-EXPENSIVE)$

4. Learning Mechanism

We use a simple posterior regularization approach to introduce the rules into the learning process

$$egin{aligned} \mathcal{L}(heta;\mathcal{D};\mathcal{Y};\mathcal{R}) &= \mathcal{L}_{MDNBT}(heta;\mathcal{D};\mathcal{Y}) + \mathcal{L}_{rules}(heta;\mathcal{D};\mathcal{R}) &= \sum_{r\in\mathcal{R}}\mathcal{L}_r(heta;\mathcal{D}) = \sum_{r\in\mathcal{R}}\mathcal{L}_r(heta;\mathcal{D}) \end{aligned}$$



Antecedent and consequent learning in Implication

 $\Delta_r heta = -\lambdaig(d_X(\mathcal{L}_r) d_ heta(X)) + d_Y(\mathcal{L}_r) d_ heta(Y))ig)$

$$\mathcal{L}_r = X(1-Y)$$
 and $abla(\mathcal{L}_r) = (1-Y, -X)$

For example if X=1 and Y=0 (the implication is not satisfied)

$$\Delta_r heta = -\lambda \, d_ heta(X) + \lambda \, d_ heta(Y)$$

Thus, the network will update parameters in the direction of growth of Y and in the direction of decrease of X.

In rules of the form R₂, we avoid the learning through the antecedent by using non-derivable functions

example:

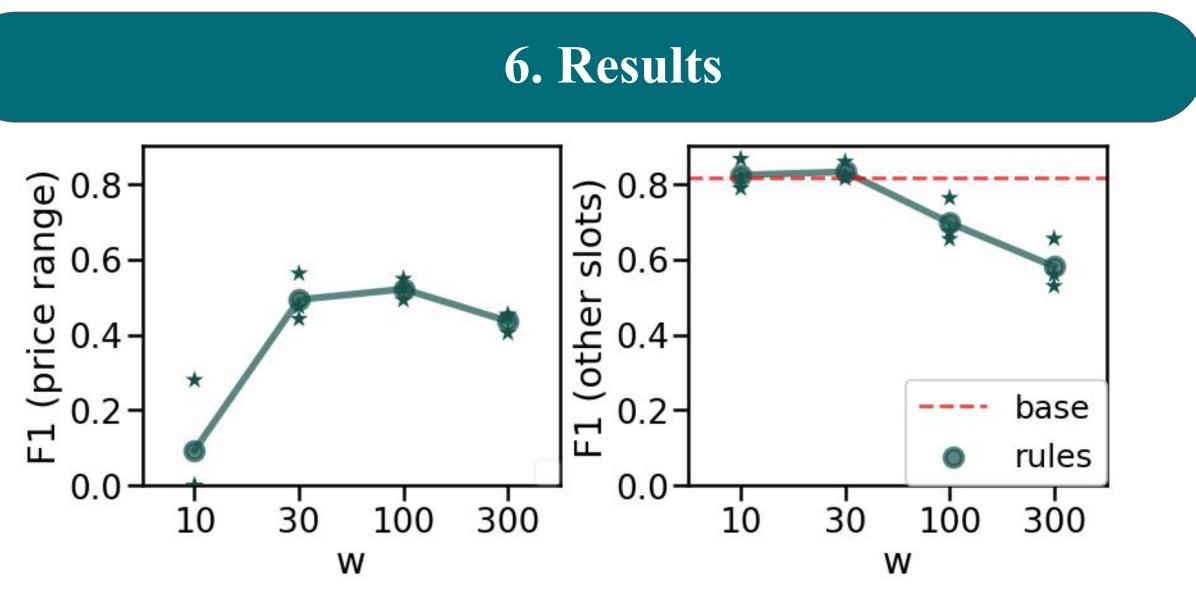
$$=X+Y-XY \ 1-X(1-Y)$$

 $w \; \mathcal{L}_{rules}(heta; \mathcal{D}; \mathcal{R}) \; .$

 $\sum_{r \in \mathcal{R}} 1 - truthiness_r(heta; \mathcal{D})$

moderate and expensive).

- \succ We tested if this method allows the prediction of a new label by simulating an scenario in which we removed all existing annotations for the *price range* slot in the training set.
- \succ We evaluated the performance of our model to predict the *price range* slot on the test set (which does have *price range* labels)
- \succ For the remaining slots, we compared the performance of our rule-based model with a model trained in the same data and no rules. Here we tested if the addition of rules degrade the prediction capabilities over the rest of the labels



- all rules-weight (w) values
- and p-val= 0.004 respectively)

7. Discussion and Conclusions

- between learning the rules and the degradation of the system
- formulation of appropriate rules.

task-oriented dialogue modelling", EMNLP, 2018 ACL, 2018

Instituto de Ciencias de la Computación

5. Experiment

> We implemented rules of the form R_1 and R_2 for all the six possible combinations of domains (hotel and restaurant) and price ranges (cheap,

 \succ In all evaluations, we used F1 score, measured by considering the correct and incorrect predictions in each slot of each domain.

> There is a non-zero predictive capacity in the price range slot (left panel) for

 \succ There is no performance degradation for the rest of the slots (right panel) for low rules-weight values (w = 10, 30) (p-val>0.1). While values of w greater than 30 produce a notable decrease in the general performance (p-val = 0.06)

 \succ We show that it is possible to integrate rules into an existing system to allow the prediction of unseen labels (zero-shot learning) without degrading the predictive capabilities over the rest of the labels (as it is the case with w = 30) \succ It is necessary to pay special attention to the trade-off that is generated

 \succ Our rules-based solution is independent of the neural network model and thus can be applied to any application (and neural network model) given the

8. References

[1] Budzianowski, et al. "Multiwoz-a large-scale multi-domain wizard-of-oz dataset for

[2] O. Ramadan, et al. "Large-scale multi-domain belief tracking with knowledge sharing",