
pix2rule: End-to-end Neuro-symbolic Rule Learning

Semi-symbolic Layer
If we utilise t-norms to implement fuzzy logic, as the number of inputs 
increases, the operation suffers from vanishing gradients and becomes 
unviable for downstream layers such as CNNs. This phenomenon occurs 
due to the 1 out of n failure or success characteristic of conjunction and 
disjunction respectively.  Hence, we are interested in an operation that does 
not starve gradients and eventually converges to the desired semantics.

Abstract
Humans have the ability to seamlessly combine low-level visual input with 
high-level symbolic reasoning often in the form of recognising objects, 
learning relations between them and applying rules. Neuro-symbolic 
systems aim to bring a unifying approach to connectionist and logic-based 
principles for visual processing and abstract reasoning respectively. This 
paper presents a complete neuro-symbolic method for processing images 
into objects, learning relations and logical rules in an end-to-end fashion. 
The main contribution is a differentiable layer in a deep learning architecture 
from which symbolic relations and rules can be extracted by pruning and 
thresholding. We evaluate our model using two datasets: subgraph 
isomorphism task for symbolic rule learning and an image classification 
domain with compound relations for learning objects, relations and rules. 
We demonstrate that our model scales beyond state-of-the-art symbolic 
learners and outperforms deep relational neural network architectures.

For the full neuro-symbolic model, we combine the DNF layer with an 
upstream Convolutional Neural Network, object selection and relational 
layers. The entire model is end-to-end differentiable and the object 
representations, their relations and rules are learnt together. For 
symbolic tasks we just use the DNF layer as a standalone model.

Delta is the semantic gate selector ranging from 0 to 1 for conjunction 
and -1 for disjunction. Negation naturally is implemented as multiplicative 
inverse and we select f to be tanh. The semi-symbolic layer thus can 
gradually switch between a linear layer and a logical gate.
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Limitations
● The rule learning requires a ground logic program which may not scale 

well to large number of constants.
● The model may overfit and under-utilise explicit object, relation and 

rule separation, e.g. learn a rule with just a single relation.

Analysis
Trained on the between task with 1k training examples, the following 
symbolic rule can be used to solve it. The last argument is the predicate ID. 
This rule achieves 97% test accuracy.

For the subgraph set isomorphism problem, we create three difficulties in 
which the rule lengths increase. We compare against two state-of-the-art 
rule learners: ILASP [1] and FastLAS [2]. Our DNF model scales better to 
longer rules. DNF+t is with thresholded weights giving symbolic rules.

Datasets
We use two datasets: (i) Subgraph set isomorphism requires a model to 
decide whether any subgraph of a given graph is isomorphic to a set of 
other graphs and (ii) Relations Game dataset consists of an input image 
with different shapes and colours exhibiting compound relations.

Experiments

When we plot the 
selected objects from the 
relations game dataset, 
we observe that the 
model learns to select 
image patches that 
correspond to shapes. If 
there are extra slots, then 
blank patches are 
selected.

We remove one atom at a time and compute the drop in accuracy. We then 
plot the truth cases for the most important atom. For the example rule, 
binary(X,Y,6) drops accuracy by 18%. Object arguments (top and bottom 
rows) that make binary(X,Y,6) true and false exhibit no common pattern to 
principal concepts of the dataset.
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t :- not nullary(1), unary(X,0),
     not binary(X,Y,0), binary(X,Y,1).

t :- nullary(1), unary(X,0), unary(Y,1),
     binary(X,Y,1), binary(Y,X,0).
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We construct a disjunctive normal 
form layer (DNF) by stacking two 
semi-symbolic layers, one conjunctive 
and one disjunctive. In order to learn 
first order rules with variables, we 
curate all permutations of object to 
variable binding, grounding the logic 
program. We use the max operator to 
reduce existential variables.
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For the full neuro-symbolic pipeline, we compare against PrediNet [3], a 
state-of-the-art deep relational neural network. We demonstrate that our 
model is more data efficient if not competitive against PrediNet.


