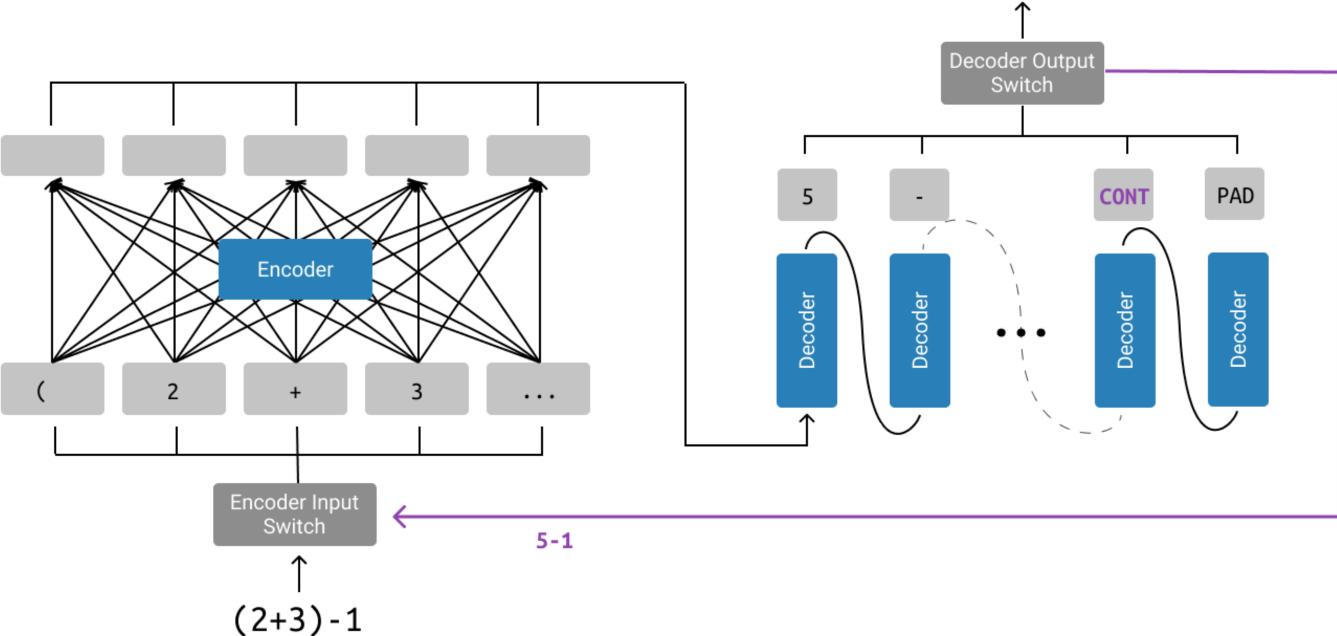


Background

- Goal: Training neural language models to learn mathematical reasoning
- Past sequence-to-sequence models perform well when evaluated on test samples from the same distribution, but lack in extrapolation capabilities
- We aim to tackle generalization issues encountered by existing models by explicitly modeling recursion.

Approach

- RecT inherits properties from both recursive and transformer based language models
- RecT treats each recursive step independently, allowing us to teacher-force intermediate steps (leading to efficient computation).
- We introduce two special tokens, "Loop Continue" and "Loop End", which allow the model to signal whether or not it should recurse.



Experiment Setup

- Curriculum-based approach where the models are first pre-trained on simple arithmetic.
- Leveraged the DeepMind Mathematics Dataset and complex multistep arithmetic problems into increasingly "reduced" representations

Randomized Padding

- Since we will be measuring model extrapolation, the length of problems at test time may exceed the length during training.
- This poses a challenge to models because they may have never learned to use positions beyond what was necessary in training.
- We resolve this issue by prefixing problems with a random number of padding tokens.

RecT: A Recursive Transformer Architecture for Generalizable Mathematical Reasoning

Rohan Deshpande, Jerry Chen, Isabelle Lee Stanford University Department of Electrical Engineering & Computer Science

Subproblem Marking

Results

are trained with sub-problem marking.

ѵ҇Ѳ҄҄ҥ҄ҥ҅҄Ѳ҄҄ҥ҄ҥ҅ҥ҄ҥҥҥӈш

• Additional 20.53% improvement in extrapolation with randomized padding.

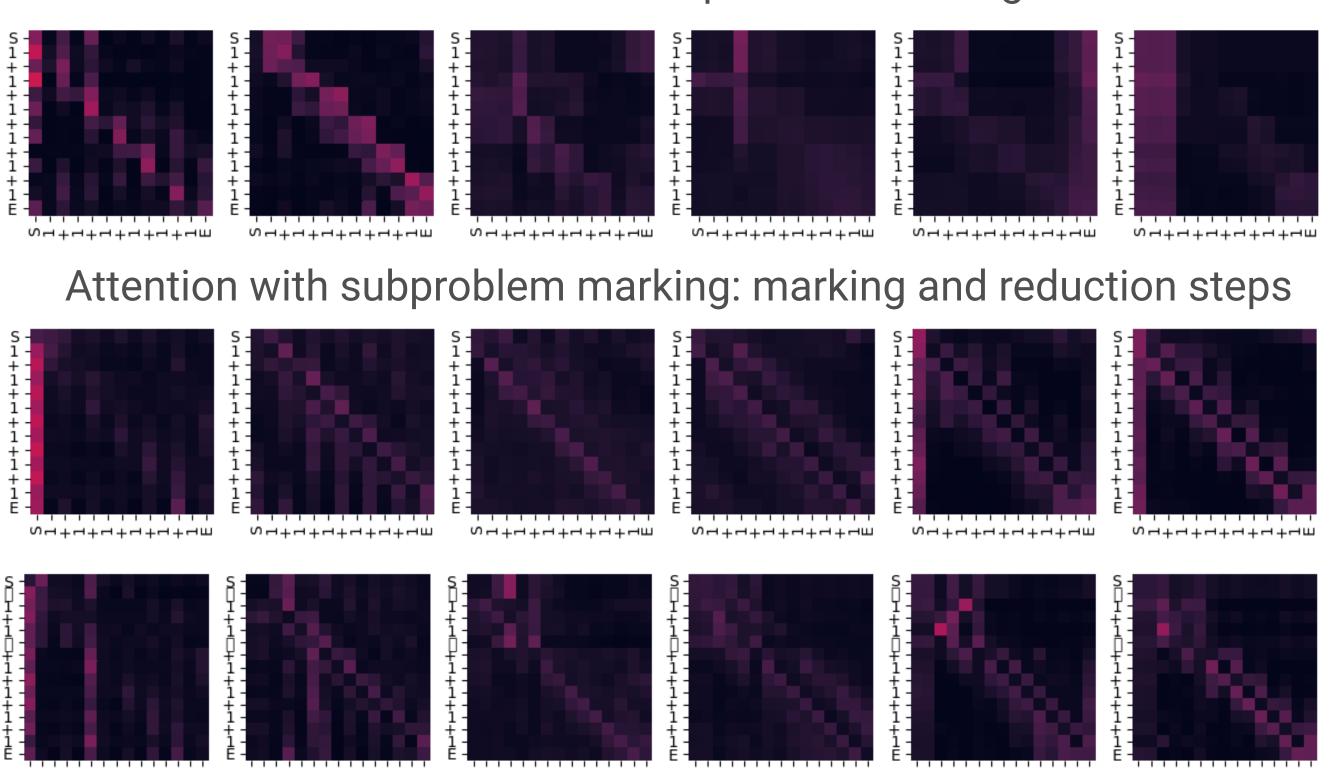
ѵ═┥┼┥═┼┥┼┥┼┥┼┥Ш

Results of RecT model variants.

Test Data	Variant	Per-Step Accuracy	End-to-End Accuracy
Simple addition/subtraction of two numbers, each up to 9 digits	RecT_Small	N/A	97.210%
	RecT_Medium	N/A	99.220%
	RecT_Large	N/A	99.820%
Interpolation: Multi-step addition/subtraction (be- tween 3 and 6 operators)	RecT_Small	99.875%	98.890%
	RecT_Medium	100%	100%
	RecT_Large	99.998%	99.980%
Extrapolation: Multi-step addition/subtraction (between 9 and 11 operators)	RecT_Small	88.153%	37.350%
	RecT_Medium	96.426%	66.260%
	RecT_Large	88.372%	23.110%

- Originally, each teacher-forced intermediate step involved performing 1 computation and copying the rest of the arithmetic problem.
- However, it is difficult for models to differentiate between the computation and copy portions in this scheme when using cross-attention.
- We solve this by augmenting the token space: we create tokens which mark the beginning and end of a sub-problem. By doing this RecT, is taught to alternate between "marking" a valid sub-problem to solve and performing the computation.

Attention without subproblem marking



ѵ҄҇Ѳ҇҇҇҇⊣┼┥҄┼┥┼┥┼┥╨ ᄵᄆᆏᆃᆑᄆᆃᆑᆃᆑᆃᆑᆃᆐᄥ

Average accuracy improvement of 22.65% on extrapolation tasks when models

Analysis

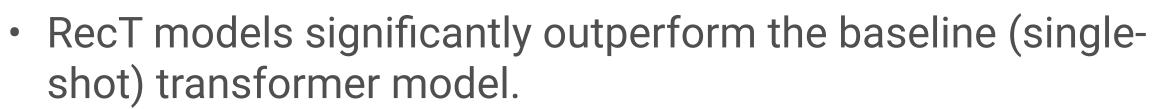
		Singl	e Ste	p Ac	cura	су
Single Step Accuracy	100%					_
	90%					
	80%					
	70%					
	60%					
	50%					
	40%					
	30%					
	20%					
	10%					
	0%					
		1	2	3	4	Pr

- problem
- rather than add

Conclusion

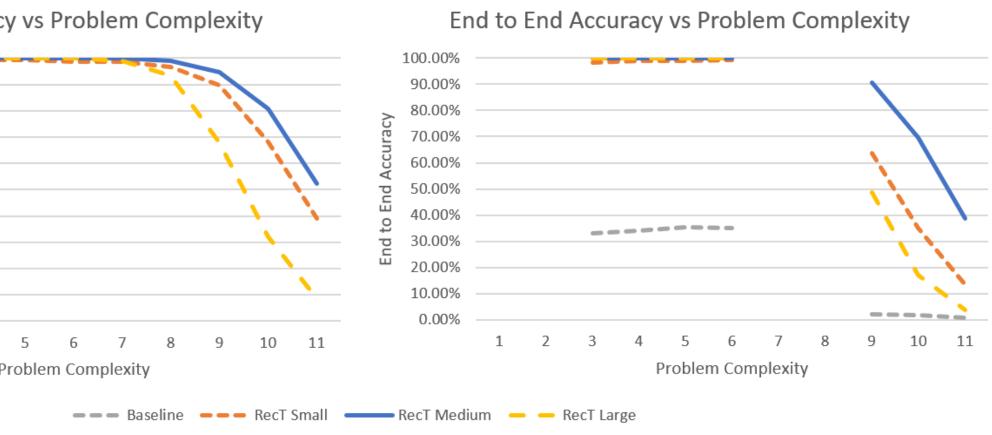
Future Work

- Experiment with other mathematical problem types



• RecT_Medium achieves 90% E2E accuracy on 9-operator problems despite not having seen problems with more than 6 operators during training.

• There is a significant drop-off in accuracy for 11-operator problems. We hypothesize that increasing diversity in problem complexity during training would yield even better generalization capabilities.



Common Errors Made By RecT Models:

• Carrying mistakes leading to off-by-one errors in some digits Dropping parentheses that are unrelated to the current sub-

Double negatives sometimes causing the model to subtract

 We have developed and validated a strongly supervised recursive transformer which was trained on complex arithmetic computation.

 The RecT model acheives 100% accuracy on out-of-sample interpolation dataset and 66.26% on extrapolation (previous) studies report $\sim 0\%$ on extrapolation).

 RecT provides increased interpretability by outputting a proof of work (since it it explicitly computes each intermediate computation step)

Investigate weakly supervized approach (where

intermediate steps are not teacher-forced)