
RecT: A Recursive Transformer Architecture for Generalizable
Mathematical Reasoning

Rohan Deshpande, Jerry Chen, Isabelle Lee

Stanford University Department of Electrical Engineering & Computer Science

� Goal: Training neural language models to learn mathematical
reasonin�

� Past sequence-to-sequence models perform well when evaluated on
test samples from the same distribution, but lack in extrapolation
capabilitie�

� We aim to tackle generalization issues encountered by existing
models by explicitly modeling recursion.

� RecT inherits properties from both recursive and transformer based
language model�

� RecT treats each recursive step independently, allowing us to
teacher-force intermediate steps (leading to efficient computation)�

� We introduce two special tokens, “Loop Continue” and “Loop End”,
which allow the model to signal whether or not it should recurse.

Randomized Padding

Subproblem Marking

Results

Conclusion

Common Errors Made By RecT Models:

Background

Approach

Future Work

Experiment Setup � We have developed and validated a strongly supervised
recursive transformer which was trained on complex
arithmetic computation.�

� The RecT model acheives 100% accuracy on out-of-sample
interpolation dataset and 66.26% on extrapolation (previous
studies report ~0% on extrapolation)�

� RecT provides
increased interpretability by outputting a
proof of work (since it it explicitly computes each
intermediate computation step)

� RecT models significantly outperform the baseline (single-
shot) transformer model�

� RecT_Medium achieves 90% E2E
accuracy on 9-operator
problems despite not having seen problems with more than
6 operators
during training�

� There is a significant drop-off in accuracy for
11-operator
problems. We hypothesize that increasing diversity in
problem complexity during training would yield even better
generalization capabilities.

� Investigate weakly supervized approach (where
intermediate steps are not teacher-forced�

� Experiment with other mathematical problem types

� Since we will be measuring model extrapolation, the length of
problems at test time may exceed the length during training�

� This poses a challenge to models because they may have never
learned to use positions beyond what was necessary in training�

� We resolve this issue by prefixing problems with a random number
of padding tokens.

� Curriculum-based approach where the models are first pre-trained
on simple arithmetic�

� Leveraged the DeepMind Mathematics Dataset and complex multi-
step arithmetic problems into increasingly “reduced”
representations

� Average accuracy improvement of 22.65% on extrapolation tasks when models
are trained with sub-problem marking�

� Additional 20.53% improvement in extrapolation with randomized padding.

� Originally, each teacher-forced intermediate step involved performing 1
computation and copying the rest of the arithmetic problem�

� However, it is difficult for models to differentiate between the computation and
copy portions in this scheme when using cross-attention�

� We solve this by augmenting the token space: we create tokens which mark the
beginning and end of a sub-problem. By doing this RecT, is taught to alternate
between “marking” a valid sub-problem to solve and performing the computation.

Attention without subproblem marking

Attention with subproblem marking: marking and reduction steps

Analysis

� Carrying mistakes leading to off-by-one errors in some digit�
� Dropping parentheses that are unrelated to the current sub-

problem�
� Double negatives sometimes causing the model to subtract

rather than add

