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� Goal: Training neural language models to learn mathematical 
reasonin�

� Past sequence-to-sequence models perform well when evaluated on 
test samples from the same distribution, but lack in extrapolation 
capabilitie�

� We aim to tackle generalization issues encountered by existing 
models by explicitly modeling recursion.

� RecT inherits properties from both recursive and transformer based 
language model�

� RecT treats each recursive step independently, allowing us to 
teacher-force intermediate steps (leading to efficient computation)�

� We introduce two special tokens, “Loop Continue” and “Loop End”, 
which allow the model to signal whether or not it should  recurse. 
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Experiment Setup � We have developed and validated a strongly supervised 
recursive transformer which was trained on complex 
arithmetic computation.�

� The RecT model acheives 100% accuracy on out-of-sample 
interpolation dataset and 66.26% on extrapolation (previous 
studies report ~0% on extrapolation)�

� RecT provides
increased interpretability by outputting a 
proof of work (since it it explicitly computes each 
intermediate computation step)

� RecT models significantly outperform the baseline (single-
shot) transformer model�

� RecT_Medium achieves 90% E2E
accuracy on 9-operator 
problems despite not having seen problems with more than 
6 operators
during training�

� There is a significant drop-off in accuracy for
11-operator 
problems. We hypothesize that increasing diversity in 
problem complexity during training would yield even better 
generalization capabilities.

� Investigate weakly supervized approach (where 
intermediate steps are not teacher-forced�

� Experiment with other mathematical problem types

� Since we will be measuring model extrapolation, the length of 
problems at test time may exceed the length during training�

� This poses a challenge to models because they may have never 
learned to use positions beyond what was necessary in training�

� We resolve this issue by prefixing problems with a random number 
of padding tokens.


� Curriculum-based approach where the models are first pre-trained 
on simple arithmetic�

� Leveraged the DeepMind Mathematics Dataset and complex multi-
step arithmetic problems into increasingly “reduced” 
representations

� Average accuracy improvement of 22.65% on extrapolation tasks when models 
are trained with sub-problem marking�

� Additional 20.53% improvement in extrapolation with randomized padding.

� Originally, each teacher-forced intermediate step involved performing 1 
computation and copying the rest of the arithmetic problem�

� However, it is difficult for models to differentiate between the computation and 
copy portions in this scheme when using cross-attention�

� We solve this by augmenting the token space: we create tokens which mark the 
beginning and end of a sub-problem. By doing this RecT, is taught to alternate 
between “marking” a valid sub-problem to solve and performing the computation.
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Analysis

� Carrying mistakes leading to off-by-one errors in some digit�
� Dropping parentheses that are unrelated to the current sub-

problem�
� Double negatives sometimes causing the model to subtract 

rather than add



