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MOTIVATION

RANDOM WEIGHTED FEATURE NETWORK (RWFN)
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Neural Tensor Networks (NTNs) Learn Relationships
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« Stingless bees, derived with respect to honeybees, maintain neural investment in both:
« Antennal lobes (feature extraction)
 Mushroom bodies (high-order reasoning)

* Each slice of tensor represents
membership degree of a
relationship being queried

* NTN can be trained on a given
relationship set and then used to
infer other relationships
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Logic Tensor Networks (LTNs)

NTN's can be generalized to learn and reason over knowledge that can be
represented as predicates in First-Order Logic.

For example) friend(Mary, John) - -
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Individuals are grounded with real features (e.g. vectors, matrices, ...).
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Predicates are grounded with operations (e.g. neural networks, ...) €2 ﬁﬂﬂs ggg‘ﬂﬁm - g %!
that project in the interval [0,1]. OO0 @ i T.h) =%
The output denotes a satisfaction level. 000006 s ol

e.g. G(friend) : R™ x R™ — [0, 1] ;
Va(friend(John, x) — friend( Mary, x)) r - ’
Encoder Decoder

Connectives ( /A, V, —, ) are interpreted using fuzzy semantics
e.g. 0.7 Aprog 0.2 = 0.7- 0.2 = 0.14

f(x) = z 0k (X, X) = Z an(‘?f’(xn) ¢(x)) + ARandomized feature mapping z: R¢ —

Variables are grounded as a list of 2 individuals n= 1 n=1 RP(D » d) is defined as Gaussian Kernel

eg.z e R"™ - Approximation: Learn non-linear
~ Z anz(Xy) " 2(x) = B 2(x)
n=1

relationship between entities
RWFN WITH WEIGHT SHARING

Quantifiers (V, 3 ) are interpreted as aggregators
€.0. Vmean (0.7,0.2,...) = =(0.74+ 0.2+ .. .)

e.g. if R denotes the predicate for friends, and A denotes the predicate for Italian,

the following computational graph translates the English sentence "everybody has a friend that is Italian". A Single Sharable Encoder
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« Semantic Image Interpretation (Sll) Tasks ! 444444 S
[
1. Classification of bounding boxes in an image — Unary Predicate, Cat, Dog,... |
2. Detection of the part-of relation between any two bounding boxes — Binary |

Predicate, partOf.

CONTRIBUTION

AUC of T1 (object type classification) and T2 (detection of part-of relation) for LTN, RWFN, and RWFN .
with weight sharing across label groups. MEAN_,.qp for all models. Best performances shown in bold.

Table 1

To the best of our knowledge, our work is the first research to integrate both insect
neuroscience and neuro-symbolic approaches for reasoning under uncertainty and
for learning in the presence of data and rich knowledge.

Label-Task LTN RWFN RWFN w/ W.S

 RWZFNSs achieve better or similar performance despite the faster learning process
|I'Id[}{}r'-T1 769:|: D3]"1]: .770:]:_{}['92 -773:&_{}25 . . .

compared to traditional neural networks due to their special structural

Indoor-T12 619, 032 648, o621 — o
VE 1|EIE'T1 7091, N289 .71 -I:I:.ﬂlﬁz .?06*_‘“111 CharaCterISthS
Vehicle-T2 576, 355 613, o459 — * RWEFNs provide a new economical way to reduce the space complexity that was
Animal-T1  .701_4,4  .700_ gy, 697, 0237 not in the existing method because its encoder part can be shared with other
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« The Ratio of Total Number of

Learnable Parameters between

RWFEFNs and LTNSs:
400: 24,972 =~

1: 62

« Space Complexity between RWFNSs
and RWFNs with Weight Sharing:
O(i - B - n):0(B - n) for Sll tasks.

« Comparison of Running Time
between LTNs and RWTNs
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