Thomas Winters\*, Giuseppe Marra\*, Robin Manhaeve, Luc De Raedt. KU Leuven, Belgium; AASS, Örebro University 🎔 @thomas\_wint, @giuseppe\_\_marra, @ManhaeveRobin, @lucderaedt 🛛 🔀 firstname.lastname@cs.kuleuven.be

### **Neural Definite Clause Grammars**

= grammar + logic + probabillites + neural probabilities using nn(model\_name,[inputs],[outputs],[domains]) as rule probability

**Example:** find sum of handwritten digit additions

0.5 :: e(N) --> n(N). $0.5 :: e(N) \longrightarrow e(N1), p, n(N2),$  $\{N \text{ is } N1 + N2\}.$ 1.0 :: p --> ["+"]. nn(number\_nn,[X],[Y],[digit]) :: n(Y) --> [X]. digit(Y) :- member(Y, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).

parse symbolic + subsymbolic sequence 2 + 3 + 8



## **Experiments & Results**

Can handle larger inputs, where others time out.

Table 7: Inference times in milliseconds for DeepStochLog, DeepProbLog and NeurASP on task T1 for variable number lengths

| Numbers Length | 1             | 2              | 3                | 4                        |
|----------------|---------------|----------------|------------------|--------------------------|
| DeepStochLog   | $1.3\pm0.9$   | $2.3\pm0.4$    | $4.0 \pm 0.4$    | $5.7 \pm 1.8$            |
| DeepProbLog    | $13.5\pm3.0$  | $36.0 \pm 0.5$ | $199.7 \pm 14.0$ | $\operatorname{timeout}$ |
| NeurASP        | $9.2 \pm 1.4$ | $85.7\pm22.6$  | $158.2\pm47.7$   | timeout                  |





# **DeepStochLog: Neural Stochastic Logic Programming**



DTAI

| Num               | ber of digits                                                                                        | per number                                                                                                                                                                                                 | (N)                                                                                                                                                                                                                                                                     |  |
|-------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1                 | 2                                                                                                    | 3                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                       |  |
| $97.3\pm0.3$      | $93.9\pm0.7$                                                                                         | timeout                                                                                                                                                                                                    | timeout                                                                                                                                                                                                                                                                 |  |
| $97.2\pm0.5$      | $95.2 \pm 1.7$                                                                                       | $\operatorname{timeout}$                                                                                                                                                                                   | $\operatorname{timeout}$                                                                                                                                                                                                                                                |  |
| $97.9\pm0.1$      | $96.4\pm0.1$                                                                                         | $94.5\pm1.1$                                                                                                                                                                                               | $92.7\pm0.6$                                                                                                                                                                                                                                                            |  |
| Expression length |                                                                                                      |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                         |  |
| 1                 | 3                                                                                                    | 5                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                       |  |
| $90.2 \pm 1.6$    | $85.7\pm1.0$                                                                                         | $91.7 \pm 1.3$                                                                                                                                                                                             | $20.4 \pm 37.2$                                                                                                                                                                                                                                                         |  |
|                   |                                                                                                      |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                         |  |
| $90.8 \pm 1.3$    | $85.6\pm1.1$                                                                                         | timeout                                                                                                                                                                                                    | timeout                                                                                                                                                                                                                                                                 |  |
|                   | Num<br>1<br>97.3 $\pm$ 0.3<br>97.2 $\pm$ 0.5<br>97.9 $\pm$ 0.1<br>he accuracy<br>1<br>90.2 $\pm$ 1.6 | Number of digits<br>1 2<br>$97.3 \pm 0.3$ $93.9 \pm 0.7$<br>$97.2 \pm 0.5$ $95.2 \pm 1.7$<br>$97.9 \pm 0.1$ $96.4 \pm 0.1$<br>he accuracy (%) on the H<br>Expressi<br>1 3<br>$90.2 \pm 1.6$ $85.7 \pm 1.0$ | Number of digits per number         1       2       3 $97.3 \pm 0.3$ $93.9 \pm 0.7$ timeout $97.2 \pm 0.5$ $95.2 \pm 1.7$ timeout $97.9 \pm 0.1$ $96.4 \pm 0.1$ $94.5 \pm 1.1$ Expression length         1       3       5 $90.2 \pm 1.6$ $85.7 \pm 1.0$ $91.7 \pm 1.3$ |  |

erc

stochastic logic, which scales better than alternative frameworks, while still keeping it's generality.

#### \*contributed equally

### Proof derivations d(e(1), [0 + 7])using Prolog. e(E1), [+], n(E2), {1 is E1+E2} n(E1), [+], n(E2), {1 is E1+E2} [**Ø**+], n(E2), {1 is 0+E2} [**0**+], n(E2), {1 is 1+E2} [0+1],{1 is 0+1} {1 is 1+0} 0 + 1[O+1]Convert to and/or tree + semiring (+, x) for P<sub>G</sub>(derives(e(1), [ $\mathcal{O}$ + $\mathcal{I}$ ]) $(\max, x) \text{ for } d_{\max}(e(1), [0+7])$ $p_m(\mathcal{O}=0) \leftarrow AND$ $AND \longrightarrow p_m(\mathcal{O}=1)$ p₂ ← AND $AND \rightarrow p_2$ $p_{m}(/ = 0)$ $p_{m}(/ = 1)$ Conclusion **DeepStochLog** is a new neuro-symbolic logic framework based on