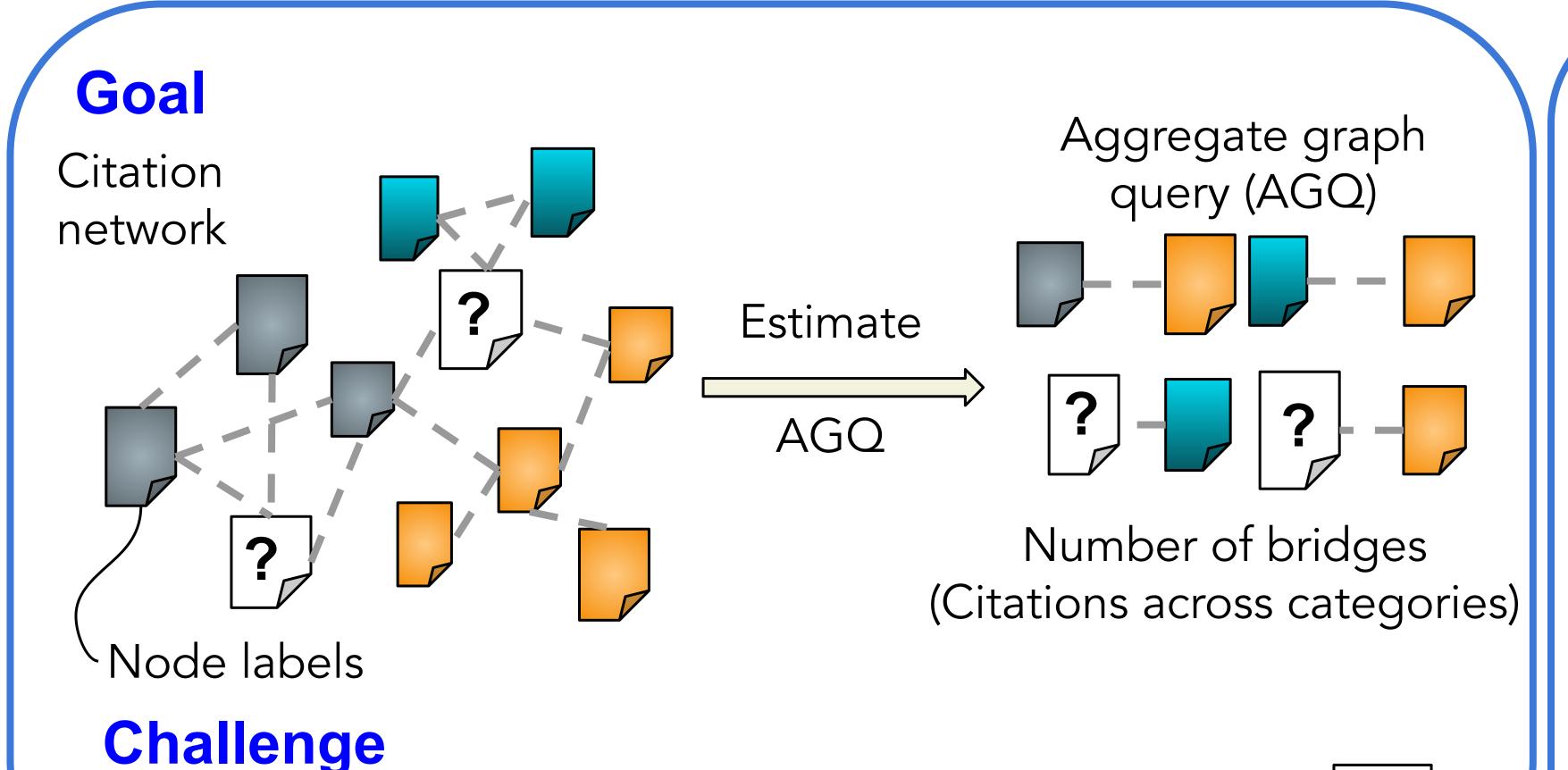


A Comparison of Statistical Relational Learning and Graph Neural Networks for Aggregate Graph Queries

Varun Embar ⁺, Sriram Srinivasan ⁺, and Lise Getoor University of California, Santa Cruz *Equal Contribution



• Estimating aggregate graph query when network is not fully observed (E.g. missing node labels)

Aggregate graph queries

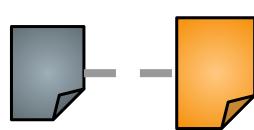
• Aggregate graph query (Q): Aggregate function computed on a set of subgraphs that satisfy given conditions ($Q: graph \rightarrow R$) o Properties involving multiple nodes, edges and labels

Q0: Accuracy:

categories assigned to them

Q2: Edge separation:

of links across documents that belong to different category



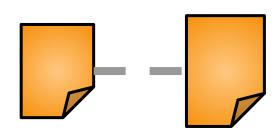
Q4: Exterior documents

approach

of nodes where half the neighbors belong to different categories

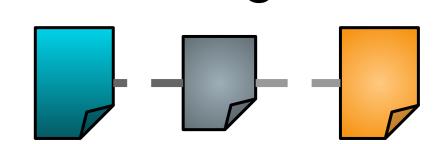
Q1: Edge cohesion:

of documents with the correct # of links across documents that belong to same category



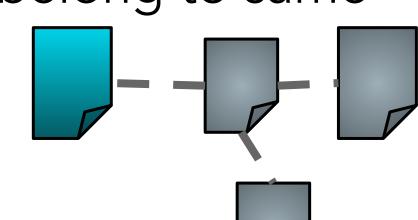
Q3: Diversity of influence:

of nodes linked to at least half of all categories



Q5: Interior documents

of nodes where half the neighbors belong to same categories



distribution

Estimating aggregate graph queries GNN model Infer missing values Point estimate approach Query (Q) Q(Graph) Expectation 5: link(x,y) & hascat(x,c) -> hascat(x,c) 5: LR(x,c) -> hascat(x,c) Expectation-based SRL model Infer joint probability

Tractable expectation computation for PSL

Theorem

For even simple graphs, generated using stochastic block models, with two nodes, point estimate approaches cannot minimize the expected mean squared error

Expectation-based approach

- Probabilistic soft logic^[1] is a state-of-the-art SRL framework
- Computing expectation is intractable due to integration
- Monte Carlo approximation using samples from Gibbs sampler

Challenge

Conditional distribution for Gibbs sampler

$$p(y_i \mid X, Y_{-i}) \propto exp\{-\sum_{r=1}^{N_i} w_r \phi_r(y_i, X, Y_{-i})\}$$
 Hard to sample from

• Single step of Metropolis sampler inside gibbs sampler

$$\alpha = \frac{exp\{-\sum_{r=1}^{N_i} w_r \phi_r(y_i', X, Y_{1:i-1}^{(t+1)}, Y_{i:n}^{(t)})\}}{exp\{-\sum_{r=1}^{N_i} w_r \phi_r(y_i, X, Y_{1:i-1}^{(t+1)}, Y_{i:n}^{(t)})\}} \quad \text{Acceptance}$$

Experimental evaluation

Data: Pubmed, Citeseer and Cora

Graph Neural Networks: Graph Convolutional Networks (GCN), Graph Attention Network (GAT), Graph Markov Neural Networks (GMNN) Statistical Relational Learning: Markov Logic Networks (MLN), Probabilistic Soft Logic (PSL)

Metric: Relative error

[1] http://psl.linqs.org

Aggregate property estimation:

Methods	Q0	Q1	Q2	Q3	Q4	Q5	AQE
GCN	0.152	0.129	0.524	2.732	0.737	0.126	0.733
GAT	0.168	0.144	0.583	2.364	0.764	0.132	0.692
GMNN	0.157	0.134	0.545	2.581	0.743	0.127	0.714
LR	0.219	0.126	0.513	6.342	0.712	0.120	1.33
MLN-MAP	0.205	0.075	0.362	3.613	0.435	0.080	0.795
PSL-MAP	0.170	0.016	0.064	4.259	0.007	0.001	0.752
MLN-SAM	0.223	0.037	0.070	0.057	0.051	0.007	0.073
PSI -SAM	0.171	0.009	0.038	0.011	0.022	0.003	0.042

Methods	Q0	QI	Q_2	Q3	Q4	Q5	AQE
GCN	0.263	0.241	0.736	0.876	0.907	0.429	0.575
GAT	0.272	0.254	0.775	0.888	0.939	0.439	0.594
GMNN	0.268	0.251	0.766	0.867	0.905	0.412	0.578
LR	0.327	0.134	0.408	0.378	0.382	0.176	0.300
MLN-MAP	0.292	0.192	0.595	0.625	0.789	0.369	0.477
PSL-MAP	0.283	0.151	0.460	0.600	0.516	0.237	0.374
MLN-SAM	0.297	0.161	0.506	0.641	0.485	0.217	0.384
PSL-SAM	0.286	0.143	0.435	0.586	0.509	0.231	0.365

Citeseer

Pubmed

Methods	Q0	Q1	Q2	Q3	Q4	Q5	AQE
GCN	0.143	0.0756	0.323	0.281	0.768	0.363	0.325
GAT	0.159	0.076	0.326	0.281	0.729	0.361	0.322
GMNN	0.142	0.081	0.348	0.254	0.754	0.367	0.324
LR	0.324	0.320	1.371	1.854	0.993	0.401	0.709
MLN-MAP	0.188	0.011	0.110	0.136	0.529	0.268	0.207
PSL-MAP	0.162	0.027	0.116	0.063	0.060	0.034	0.077
MLN-SAM	0.170	0.021	0.092	0.068	0.074	0.035	0.076
PSL-SAM	0.170	0.015	0.066	0.005	0.040	0.022	0.053

Cora

Effect of training data

Cora

Runtime							
Methods	Cora	Pubmed	Citeseer				
	Time (sec)	Time (sec)	Time (sec)				
GCN	24	59	29				
GAT	142	138	122				
GMNN	30	17	8				
LR	2	5	2				
PSL-MAP	14	124	37				
MLN-MAP	65	368	36				
PSL-SAM	105	638	124				
MLN-SAM	270	1947	166				

Conclusion

- Defined a suite of practical aggregate graph queries
- Proposed a novel sampling framework for PSL
- Extensive evaluation shows SRL approaches outperform GNNs when estimating aggregate graph queries