Learning from interpretation transition using differentiable logic programming semantics

$\begin{array}{cccc} p \leftarrow p \wedge q \wedge \neg r \\ P : p \leftarrow r \wedge \neg p & \longrightarrow & \mathbf{M}_{P}^{SHV} \\ p \leftarrow \end{array}$	$= \frac{1}{3}$ = 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} p \\ q \\ r \end{array}$	According to the inde information of non-ze elements in each line we can extract the corresponding logic ru
		SHV matrix		

Kun Gao¹, Hanpin Wang^{1,2}, Yongzhi Cao¹, Katsumi Inoue³ ¹ Peking University ² Guangzhou University ³ National Institute of Informatics

Table 2 Comparison o accuracy (%) of rules CILP++

	Woder name	The faces of mislabeled data				
		5%	20%	35%	50%	
	NN-LFIT	3.25, 96.75	10.56,89.43	15.14,84.86	17.74,82.25	
	D-LFIT	2.23, 92.34	8.53, 87.25	10.89, 84.34	12.08, 84.96	
	LF1T	-,77.25	-,77.16	-,77.38	-,77.32	
	JRip	- ,78.91	- ,78.54	-,78.55	- ,78.15	
lian	NN-LFIT	4.77, 79.72	16,78.11	20.98,79.01	23.20,74.49	
	D-LFIT	3.45, 80.00	11.53,78.82	15.74, 80.29	16.35, 86.27	
	LF1T	-, 76.72	-,76,73	-,76.62	-,77.32	
	JRip	-,74.21	-,74.45	-,74.43	-,74.00	
ţ	NN-LFIT	ROT	ROT	ROT	ROT	
	D-LFIT	4.9, 76.42	13.3, 74.28	16.53,73.41	18.21,74.71	
	LF1T	ROT	ROT	ROT	ROT	
	JRip	- ,67.99	-,67.15	-,66.80	-,66.41	
psis	NN-LFIT	ROT	ROT	ROT	ROT	
	D-LFIT	4.8,81.46	11.83,76.59	15.4 ,70.28	17.35,64.90	
	LF1T	ROT	ROT	ROT	ROT	
	JRip	-,68.27	-, 67.34	-,66.94	-,66.65	
nesis	D-LFIT	88.89	83.33	88.89	88.89	
	JRip	66.49	62.23	62.77	62.23	
E	D-LFIT	73.49	72.67	73.29	73.29	
	JRip	72.80	67.35	66.04	66.23	
ers-amine	D-LFIT	63.24	63.24	60.29	58.83	
	JRip	48.35	49.42	49.27	50.87	

- databases.
- format.

1. Handling with **mislabeled** data

3. Handling with **first-order logic** program

Using propositionalization method to generate first-order feature table. We use bottom clause propositionalization algorithm (**BCP**) to generate first-order features, and regard them as pairs of attribute-value. Then we use D-LFIT to learn firstorder logic programs from these features.

of the obtained by	Model	Datasets					
	2	Mutagenesis	UW_CSE	Alzheimer-amine			
	CILP++	77.72	81.98	78.70			
	D-LFIT	83.33	79.44	67.75			

Discussions

1. D-LFIT is an inductive logic programming learner, which can learn propositional logic programs from mislabeled data or incomplete data.

2. Through adopting the BCP algorithm, we can learn first-order logic programs from relational

3. D-LFIT is a robust, fast leaner, which can **curriculum learning strategy** to learn knowledge from data.

4. We will devise more constrains to make the generated logic programs meet the destinated

5. We will apply the D-LFIT on other dataset such like knowledge graph.