Answer-Set Programs for Reasoning about Counterfactual Interventions and Responsibility Scores for Classification

Leopoldo Bertossi and Gabriela Reyes

Adolfo Ibáñez University & Millennium Institute for Foundational Research on Data (IMFD), Chile

Explanations in Machine Learning

- Client requesting a loan from a bank
- Bank using a black-box classifier
- Entity represented as a record of values for features: Name, Age, Occupation, Income, ...

e = (John, 18, plumber, 70K, Harlem) Which are the feature values most relevant for the classification outcome, i.e. the label "No" ?

Reasoning about Counterfactual Interventions

- Given a classifier, one can reason in answer-set programming (ASP) about counterfactuals, lets say Mitchell' s Decision Tree:
 - Features F = {Outlook, Humidity, Wind} Dom(Outlook) = {sunny, overcast, rain} Dom(Humidity) = {high, normal} Dom(Wind) = {strong, weak} Entity e = ent(sunny, normal, weak) gets label Yes

One can easily impose semantic constraints on counterfactuals

 \rightarrow What is the contribution of each feature value to the outcome?

A Score-Based Approach: Responsibility

Actual Causality based on Counterfactual Interventions

(Halpern and Pearl, 2001)

Hypothetical changes of values in a causal model to detect other changes: "What would happen if we change ..."?

By so doing identify actual causes

- ► Do changes of feature values make the label change to "Yes"?
- Also the quantitative notion of Responsibility: a measure of causal contribution

(Chockler and Halpern, 2004)

- We have investigated causality and responsibility in data management and classification
- Semantics, computational mechanisms, intrinsic complexity, logic-based specifications, reasoning, etc.

The Resp Score: Classification

- Scores can be computed by means of set- and numerical aggregations
- Reasoning is enabled by cautious and brave query answering

Explanations can be queried

ASPs for Counterfactual Interventions

- Counterfactual Intervention Programs (CIPs) specify counterfactual interventions on a given entity under classification
- ► We will use *DLV* and *DLV-Complex* notation
- So as with repair programs, we use annotation constants:

Annotation	Intended Meaning			
0	original entity			
do	do counterfactual intervention			
tr	entity in transition			
S	stop, label has changed			
	(single change of feature value)			

Specifying domains, entity, classification tree, annotations:

% facts:

dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).
dom3(strong). dom3(weak).
ent(o_gunny_normal_weak.c) % eriginal_entity_st_hand

ent(e,sunny,normal,weak,o). % original entity at hand

- Want explanation for label "1"
 Through changes of feature values, try to get "0"
- Fix a feature value $x = e_F$
- ▶ x counterfactual explanation for L(e) = 1if $L(e_{x'}^{x}) = 0$, for $x' \in Dom(F)$

▶ x actual explanation for L(e) = 1 if there are values Y in $e, x \notin Y$, and new values $Y' \cup \{x'\}$:

(a) $L(e\frac{Y}{Y'}) = 1$ (b) $L(e\frac{XY}{X'Y'}) = 0$

If Y is minimum in size: $x - Resp(x) := \frac{1}{1 + |Y|}$

Example

Due to e₇, F₂(e₁) is counterfactual explanation, with
 Γ = Ø and Resp(e₁, F₂) = 1
 Due to e₄, F₁(e₁) is actual explanation;

\mathcal{C}						
entity (id)	F_1	F_2	F_3	L		
e ₁	0	1	1	1		
e ₂	1	1	1	1		
e ₃	1	1	0	1		
e ₄	1	0	1	0		
e 5	1	0	0	1		
e ₆	0	1	0	1		
0-	0	0	1	0		

- % specification of the decision-tree classifier: cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z). cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z). cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y). cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).
- % transition rules: the initial entity or one affected by a value change ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o). ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).
- % counterfactual rule: alternative single-value changes ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp), dom3(Zp), X != Xp, Y != Yp, Z!= Zp, chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp), chosen3(X,Y,Z,Zp).
- Classifier could be invoked as external predicate in Python
- ► The last is the counterfactual rule
- Only one disjunct in the head becomes true; one per feature
- It uses the non-deterministic choice predicate (choice makes the program non-stratified)

Chooses a new value in last argument for each combination of the first three

- \blacktriangleright As long as the label does not depart from 1, i.e. yes
- Non-stratified negation is what makes ASP necessary

Conclusions

with $\Gamma = \{F_2(e_1)\}$ as contingency set: $\operatorname{Resp}(e_1, F_1) = \frac{1}{2}$

 We are usually interested in maximum-responsibility feature values Associated to minimum (cardinality) contingency sets of feature values
 Sometimes we may be interested in minimal contingency sets, under set-inclusion

Objectives

- Obtaining responsibility scores
- Specify counterfactual interventions, preferably actionable ones
- Reason about them, and explanations
- Compute responsibility scores from the specifications

- Addition of semantic and domain knowledge is important ASP-based approaches particulary appropriate
- Redefinition vs. hacked computation vs. change of distribution?
- Reasoning in general about explanations and counterfactuals is what intelligent agents do, score computation is not enough
- We should explore Resp, so as we did for SHAP, in the case of *deterministic* and decomposable decision diagrams (d-DDDs) Also with ASP-based specifications and computations
- Explanations are at the basis of fairness and bias analysis
- Understanding the decisions in relation to protected features becomes relevant
- Explaining *how* decisions are made

