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Abstract: This paper provides an empirical study for feature learning based on induction. We encode image data into first-order expressions and compute their least general-
ization. An interesting question is whether the least generalization can extract a common pattern of input data. We also introduce two different methods for feature extraction
based on symbolic manipulation. We perform experiments using the MNIST datasets and show that the proposed methods successfully capture features from training data and
classify test data in around 90% accuracy. The results of this paper show potentials of induction and symbolic reasoning to feature learning or pattern recognition from raw data.

Introduction

• Deep learning is powerful for feature learning, while it does neither
show what is learned nor explain why an output is obtained.

• ILP can learn human-readable hypotheses from small amounts of
data, which enables to accumulate learned results as knowledge and
to share them by humans.

• The goal of this study is to realize feature learning from raw data
using ILP techniques.

Methodology

• An image (in black, white or grayscale) is presented by 28× 28 =

784 pixels where each pixel is an integer value from 0 to 255.
• An image is then represented as a vector v ∈R784 that contains pixel
values as elements.

• Each pixel x (0 ≤ x ≤ 255) is transformed to the term f k(z) with a
variable z where

k =
⌊ x

64

⌋
+1,

f 1(z) = f (z) and f k+1(z) = f ( f k(z)) (1≤ k ≤ 3).

The function symbol f is used to represent “closeness” of pixels. For
instance, when 0≤ x1, x2 ≤ 63, both x1 and x2 are represented as f (z).
When x1 = 80 and x2 = 200, x1 is represented as f 2(z) and x2 is rep-
resented as f 4(z). This representation helps to keep information of the
range of shades in computing least generalization. With this encoding,
a vector v is encoded into an atom having 784 arities:

P(t1.1, . . . , t1.28, t2.1, . . . , t2.28, . . . , t28.1, . . . , t28.28).

We omit the predicate P that is unimportant in this study. For example,
the image (right) is encoded into a tuple of terms as:
( f (z), . . . , f (z),︸ ︷︷ ︸

28×6values

%1st to 6th rows

f (z), . . . , f (z)︸ ︷︷ ︸
16values

, f 3(z), f 4(z), f 4(z), f 3(z), f (z), . . . , f (z),︸ ︷︷ ︸
8values

%7th row

f (z), . . . , f (z)︸ ︷︷ ︸
14values

, f 2(z), f 4(z), f 4(z), f 2(z), f 2(z), f 4(z), f (z), . . . , f (z),︸ ︷︷ ︸
8values

%8th row . . . . . .

Extracting Features

• Suppose a set of training data Cl = {A1, . . . ,An} (called a class) where
l is a label and Ai (1≤ i≤ n) is a first-order atom (or a tuple) repre-
senting an image.

• Compute the least generalization of Cl using an algorithm in the lit-
erature (e.g. [Nguyen& Sakama, ILP 2019]).

The obtained vector u ∈ R784 is viewed as features extracted by least
generalization. We call u a feature vector by GEN.
Suppose a set of training data Dl = {v1, . . . ,vn} where l is a label and
vk ∈ R784 (1≤ k ≤ n) is a vector representing an image. Put

vk = (xk
1.1, . . . ,x

k
1.28,x

k
2.1, . . . ,x

k
2.28, . . . ,x

k
28.1, . . . ,x

k
28.28) (1≤ k ≤ n)

where xk
i j is a pixel value. Then, define

Si j = {xk
i j | 1≤ k ≤ n} (1≤ i, j ≤ 28).

Si j is a collection of pixel values at the location (i, j) from training
data. Then, FRQ and AVE are defined as follows.
FRQ: Select the integer value ui j that appears most frequently in Si j.
AVE: Compute wi j = bvi jc where vi j is the average value of elements

in Si j.
We call u = (ui j) (resp. w = (wi j)) a feature vector by FRQ (resp.

AVE).

Classification of Images

We next use the result of extracted features for classifying unlabelled
test data. When there are m classes, the classification is done using the
following algorithm.
Input : a vector v representing an unlabelled 28× 28 image, and the

set of feature vectors of training data: S = {uk | k = 1, . . . ,m}.
Output : the label of v.
1. For each class k (1≤ k ≤ m), compute

Dk = ∑
i j
| ui j− vi j | (1≤ i, j ≤ 28)

where ui j is an element in uk and vi j is an element in v.
2. Return l = k as the label of v where Dl is minimal among D1, . . . ,Dm.

The set S of feature vectors is obtained by one of GEN, FRQ, and
AVE. The label of a testing data is determined in a way that the sum
of differences between pixel values in each location is minimal.

Experimental Results

• The experiments use two datasets, MINST hand-written digits and
Fashion MNIST. Each dataset is split into two parts: the training set
(60,000 images) and the test set (10,000 images).

• The experimental testing is done by two stages: (i) extracting fea-
tures from training data using GEN, FRQ, and AVE; and (ii) classi-
fying test data and computing their Precision, Recall, and Accuracy
to evaluate the methods.

Fig.1 shows the results of (i) and Fig.2 shows the results of (ii).
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Figure 1: Features of the MNIST dataset (top) and Fashion-MNIST dataset (bottom) obtained by GEN, FRQ, and AVE
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Figure 2: The accuracy on the MNIST hand-written digits dataset (left) and the Fashion-MNIST dataset (right).

Conclusion

• This study introduced new methods that learn features of labelled
images by symbolic reasoning. The approach is purely symbolic and
does not use NN for learning from image data.

• Experimental results show that the proposed methods successfully
capture features from training data and classify test data in around
90% accuracies.

• We continue experiments to verify the effect of noise in images, and
investigate robust and effective representation of raw data in terms
of symbolic expressions.


