
Machine Learning manuscript No.
(will be inserted by the editor)

Symbolic DNN-Tuner

Michele Fraccaroli · Evelina Lamma ·
Fabrizio Riguzzi

the date of receipt and acceptance should be inserted later

Abstract Hyper-Parameter Optimization (HPO) occupies a fundamental role
in Deep Learning systems due to the number of hyper-parameters (HPs) to be
set. The state-of-the-art of HPO methods are Grid Search, Random Search and
Bayesian Optimization. The first two methods try all possible combinations
and random combination of the HPs values, respectively. This is performed in
a blind manner, without any information for choosing the new set of HPs val-
ues. Bayesian Optimization (BO), instead, keeps track of past results and uses
them to build a probabilistic model mapping HPs into a probability density of
the objective function. Bayesian Optimization builds a surrogate probabilistic
model of the objective function, finds the HPs values that perform best on the
surrogate model and updates it with new results. In this paper, we improve BO
applied to Deep Neural Network (DNN) by adding an analysis of the results
of the network on training and validation sets. This analysis is performed by
exploiting rule-based programming, and in particular by using Probabilistic
Logic Programming. The resulting system, called Symbolic DNN-Tuner, logi-
cally evaluates the results obtained from the training and the validation phase
and, by applying symbolic tuning rules, fixes the network architecture, and its
HPs, therefore improving performance. We also show the effectiveness of the
proposed approach, by an experimental evaluation on literature and real-life
datasets.

M. Fraccaroli · E. Lamma
DE - Department of Engineering
University of Ferrara
Via Saragat 1, 44122 Ferrara, Italy
E-mail: {michele.fraccaroli, evelina.lamma}@unife.it

F. Riguzzi
DMI - Department of Mathematics and Computer Science
University of Ferrara
Via Saragat 1, 44122 Ferrara, Italy
E-mail: fabrizio.riguzzi@unife.it

2 M. Fraccaroli et al.

Keywords Deep Learning · Hyper-Parameter Optimization · Probabilistic
Logic Programming

1 Introduction

Deep Neural Networks (DNNs) are very sensitive to the tuning of their hyper-
parameters (HPs). Different tunings of the same neural network can lead to
completely different results. For this reason, Hyper-Parameter Optimization
(HPOs) algorithms play an important role in building Deep Learning models.
These algorithms have shown good performance [1], comparable with human
experts.

This work aims at creating an algorithm to drive the training of DNNs,
automatizing the choice of HPs and analysing the performance of each train-
ing experiment to obtain a network with better performance. The algorithm
combines an automatic tuning approach with some tricks usually used in man-
ual approaches [2]. For the automatic approach we use Bayesian Optimization
(BO) [3]. This choice is motivated by the fact that tuning DNN is computa-
tionally expensive and the BO algorithm limits the evaluations of the objective
function (DNNs training and validation in this case) by spending more time
in choosing the next set of HPs values.

The whole software was written in Python, using TensorFlow for each
part regarding the neural networks, Scikit-Optimize for implementing BO and
ProbLog for the symbolic part of the software. The implementation is described
in detail in [4].

The tricks used in manual approaches to solve problems are mapped into
(non-deterministic, and probabilistic) Symbolic Tuning Rules (STRs). These
rules identify Tuning Actions (TAs), which have the purpose of editing the
HPs search space, adding new HPs or updating the network structure with-
out human intervention. All this is aimed at avoiding network problems like
overfitting, underfitting or incorrect learning rate values and driving the whole
learning process to better results.

Symbolic DNN-Tuner is composed by two main parts: a Neural Block that
manages the neural network, the HPs search space and the application of the
TAs, and a Symbolic Block (developed with Probabilistic Logic Programming
PLP, and STRs in particular) that, on the basis of the network performance
and computed metrics after each training, diagnoses problems and identifies
the (most probable) TA to be applied on the network architecture. In the
beginning, probabilistic weights of STRs are set manually, and then they are
refined, after each training, via Learning from Interpretations (an inference
available in PLP) based on the improvements obtained or not, for each TA
applied in previous training.

Therefore, our approach is positioned in the domain of Neural Symbolic
systems, since it automatically tunes the DNN architecture by exploiting PLP
and Learning from Interpretation, a kind of Inductive Logic Programming.

Symbolic DNN-Tuner 3

After a short discussion of preliminaries for a good understanding of the
paper (Section 2), we introduce in Section 3 the main DNNs problems, the
analysis done and the tuning rules used to improve the network architecture
and performance. In Section 4 we present Symbolic DNN-Tuner with its build-
ing blocks and its execution pipeline. In Section 4.3 we present the symbolic
section of Symbolic DNN-Tuner. More precisely, we show how, in the symbolic
execution pipeline, Learning From Interpretation (LFI) is applied to learn the
probability of the tuning rules and therefore dynamically change the prob-
abilistic logic program. Experimental results are described in Section 5, in
order to show that our approach greatly improves the network performance
with respect to BO, either for literature and real-case datasets. Related work
are discussed in Section 6.

2 Preliminaries

In this section, we review the preliminaries concepts, algorithm and approaches
for a good understanding of the paper. We will deal with Bayesian Optimiza-
tion (BO) like Hyper-parameters Optimization (HPO) algorithm (we will focus
mainly on BO because is the HPO algorithm used in Symbolic DNN-Tuner),
Probabilistic Logic Programming and Parameter Learning.

2.1 Bayesian Optimization

Bayesian Optimization (BO) is an approach to optimize objective functions (f)
which are very expensive and/or slow to optimize [3]. The main idea behind
this approach is to limit the time spent in the evaluation of f by spending
more time choosing the new set of HPs values. BO builds a surrogate model
of the objective function, quantifies the uncertainty in the surrogate using a
regression model (e.g., Gaussian Process Regression) and uses an acquisition
function to decide where to sample the new set of HPs [5]. The focus of BO is
solving the problem:

max
x∈D

f(x) (1)

where the input x is in Rd, d is the number of HPs and D is a search space
which can be seen as a hyper-cube where each dimension is a hyper-parameter.
Then, BO builds a probabilistic model for f(x) and exploits this model to
decide where to sample the next set of HPs values. The idea is to use all the
information derived from previous evaluations of f(x) as a memory to make
the next decision.

BO consists of two crucial components: the probabilistic regression model
(e.g., Gaussian Process, see below) and the activation function. The first com-
ponent provides a posterior probability distribution that captures the uncer-
tainty in the surrogate model and the second determines the next point to
evaluate. This is done by measuring the value that would be generated by the

4 M. Fraccaroli et al.

f(x) at this new point based on the posterior distribution [5]. This activa-
tion function is also used for finding a good balance between Exploration and
Exploitation. Exploration aims at selecting samples that eliminate the parts
of the input search space that do not include the maximizer of the f(x), while
Exploitation aims at selecting the sample closest to the optimum with a high
probability [6].

Gaussian Processes (GPs) are stochastic processes and prior distributions
on functions. GPs offers a non-parametric approach in that it finds a distribu-
tion over the possible functions f(x) that are consistent with the observed data.
A GPs can be used for regression problems. Any finite set X = {x1, x2, ..., xn}
induces a multivariate Gaussian distribution with n dimensions and a GP is
completely determined by the mean function µ and the covariance matrix K,
f ∼ GP(µ,K) [7,8]. The covariance matrix K is created by evaluating a co-
variance function (kernel) k at each pair of points xi, xj , K = k(xi, xj). The
kernel is chosen so that points xi and xj that are closer in the input space,
have a larger correlation. In this way, it can be obtained that these points
should have more similar function values than points that are far apart. For
convenience, we assume that the prior mean is the zero function µ = 0 and,
for covariance, a very popular choice is the squared exponential function

k(xi, xj) = σ2exp
(
− 1

2l2
‖xi − xj‖2

)
(2)

where parameters σ determines the variation of function values from their
mean and l describes how smooth a function is. Given setsX = {x1, x2, ..., xn}T
and Y = {y1, y2, ..., yn}T of observed values, the aim is to predict the y
value for a new point x. It can be shown that y is Gaussian distributed
with mean µ = kTC−1Y and variance σ2 = k(x, x) − kTC−1k [9,10]. k is
the column vector with elements k(xi, x) and C is composed by elements
Cij = k(xi, xj) + s2δij where s2 is the variance of the random noise in the
linear regression model y = f(x) + ε and δij is the Kronecker delta (δij = 1
if i 6= j, 0 if i = j). So, if s2 = 0, C = K (see Equation 2). In this way, it
is possible to define a prior distribution over parameters instead of choosing
values. For a complete and more precise overview of the Gaussian Process and
its application to Machine Learning, see [7].

The Acquisition function determines the next point to evaluate or, in our
case, the next set of HPs values. There are many types of acquisition func-
tion but, the most commonly used is Expected Improvement (EI) [5,11]. EI
defines a non-negative expected improvement over the best previously ob-
served target value at a given point x. Since we observe f , we can say that
f∗n = maxm≤n f(xm) is the optimal choice, i.e., the previously evaluated point
with the largest value, where n is the number of times that we have evaluated
f thus far. Now suppose that if we evaluate our function f at point x, we will
observe f(x). After the evaluation of at the point x (f(x)), the value of the
best observed point will be either f(x) or f∗n (clearly, it depends on who is

Symbolic DNN-Tuner 5

greater than the other). The improvement in the value of the best observed
point is:

best = max{0, f(x)− f∗n} (3)

for simplicity we can write this like [best]+. We would like to choose an x
that leads to maximum improvement, and we take the expected value of this
improvement and choose x to maximize it. We can formalize all of them like
as follows:

EIn(x) = En

[
[best]+

]
(4)

EIn(x) = En

[
[f(x)− f∗n]+

]
(5)

where En[·] is the expected value taken under the posterior distribution of f
after having observed x1, ..., xn [5].

2.2 Probabilistic Logic Programming

Probabilistic Logic Programming (PLP) is a tool for reasoning on uncertain
relational domains that is gaining popularity in Statistical Relational Artificial
Intelligence (StarAI) due to its expressiveness and intuitiveness. PLP has been
successfully applied to a variety of fields, such as natural language processing
[12,13,14], bio-informatics [15,16,17], link prediction in social networks [18],
entity resolution [19] and model checking [20].

We consider ProbLog [16] for the simplicity of its syntax and the avail-
ability of a Learning From Interpretation module (Section 2.3). Moreover, the
fact that it is written in simplifies the integration within Symbolic DNN-Tuner,
that is written in Python as well. ProbLog is a PLP language under the distri-
bution semantic [21]. A program that adopts a semantics of this type defines
a probability distribution over normal logic programs called worlds. To define
the probability of a query, this distribution is extended to a joint distribution
of the query and the worlds and the probability of the query is obtained from
the joint distribution by marginalization [10].

A ProbLog program consists of a set of clauses. Every clause ci is labelled
with the probability pi. Listing 1 shows an example of ProbLog code.

Listing 1: ProbLog example

% Probabilistic facts:

0.5:: heads1.

0.6:: heads2.

% Rules:

twoHeads :- heads1 , heads2.

query(heads1).

query(heads2).

query(twoHeads).

6 M. Fraccaroli et al.

A ProbLog program P = {p1 :: c1, p2 :: c2, .., pi :: cm} defines a probability
distribution over logic program L = {c1, c2, ..., cm} and the aim of inference in
ProbLog is to calculate the probability that the query will succeed [16]. With
the reference at Listing 1, the three queries return the probability of 0.5, 0.6
and 0.3 for heads, heads2 and twoHeads respectively.

ProbLog inference [22] works by generating all ground instances of clauses
in the program the query depends on and transforming the clauses to a propo-
sitional formula. After that, the logic formula is compiled into a Sentential
Decision Diagram (SDD) [23]. SDDs are a representation language for propo-
sitional knowledge bases. Then ProbLog evaluates the SDD bottom-up to cal-
culate the success probability of the given query.

2.3 Parameter Learning

The ProbLog system [24] includes a Parameter Learning algorithm (LFI-
ProbLog algorithm) [25] that learns the parameters of ProbLog programs from
partial interpretations. Generally, one is interested in the maximum likelihood
parameters given the training data. This can be formalized as follows:

Definition 1 (LFI-ProbLog learning problem) Given a ProbLog pro-
gram P containing probabilistic facts with unknown parameters (probabilistic
weights) and a set E = {I1, . . . , IT } of interpretations (the training examples),
find the value of the parameters Π of P that maximize the likelihood of the
examples, i.e., solve

arg max
Π

P (E) = arg max
Π

T∏
t=1

P (q(It))

where partial interpretation I can be written like I =
〈
It, If

〉
where atoms

in It are true and those in If are false. I can be associated with conjunc-
tion q(I) = ∧a∈Ita ∨ ∧a∈If ∼ a. So, given a ProbLog program and a series
of partial interpretations I and evidence q(I), the goal is to find the maxi-
mum likelihood parameters. Now, we need to pay attention to interpretations
(the training examples) when computing arg maxΠ P (E). If we have complete
interpretations, the parameters (probabilistic weights) can be computed by
relative frequency. If some interpretations in E are partial, instead, an EM al-
gorithm [26] must be used [25,10]. For a more complete and precise reading on
PLP and PLP Parameter Learning, see [10]. For a more detailed description
of the application of LFI in Symbolic DNN-Tuner, see Listing 3 in Section 4.3.

3 DNNs Training Problems and Countermeasures

Experts in DNN training have identified several problems that can be encoun-
tered, see [2,27]. Here we list them together with the appropriate counter-
measures mapped into Tuning Actions (TAs). Table 1 shows the association

Symbolic DNN-Tuner 7

Table 1: Symptoms and related problems

Symptoms Problem

Gap between accuracy in training and validation Overfitting
Gap between loss in training and validation Overfitting
High loss Underfitting
Low accuracy Underfitting
Loss trend analysis Increasing loss
Fluctuation of the loss Fluctuating loss
Evaluation of the shape of the loss Low learning rate

High learning rate

Table 2: Problem - TA associations

Problem Tuning Actions (TAs) Acronyms

Overfitting Regularization and Batch Normalization reg l2 & batch norm
Increase dropout inc dropout
Data augmentation data augm

Underfitting Decrease the learning rate decr lr
Increase the number of neurons inc neurons
Addition of fully connected layers new fc layer
Addition of convolutional blocks new conv layer

Increasing loss Decrease the learning rate decr lr inc loss
Fluctuating loss Increase the batch size inc batch size

Decrease the learning rate decr lr fl
Low learning rate Increase learning rate inc lr
High learning rate Decrease learning rate dec lr

between symptoms and diagnosed problems. Table 2 shows the association
between the problems and the corresponding TAs with the acronyms used in
Section 5 for the description of the experiments.

3.1 Overfitting

Overfitting is the lack of generalization ability of the model. This happens
when the model adapts too much to the training data, not generalizing and
therefore not working correctly on the validation data [27]. Diagnosing over-
fitting is relatively easy by monitoring the performance of the network during
both training and validation. Symbolic DNN-Tuner checks the difference be-
tween training and validation phase for both the accuracy and loss, in order to
identify any possible gap. A significant gap between the two phases is a clear
symptom of overfitting.

When overfitting is diagnosed, Symbolic DNN-Tuner applies two possible
TAs, as shown in Table 2: Regularization [28] and Batch Normalization [29],
Increase Dropout [30] and Data Augmentation [31].

8 M. Fraccaroli et al.

3.2 Underfitting

Underfitting happens when the model is not able to learn and fails in both
training and validation phases [27]. In order to detect underfitting, Symbolic
DNN-Tuner measures the accuracy and the loss in the validation phases. If, at
a certain iteration, the loss is greater than a manually predetermined threshold
and accuracy is lower than another manually predetermined threshold, Sym-
bolic DNN-Tuner diagnoses underfitting. These two thresholds are dynami-
cally increased as the algorithm progresses. This allows Symbolic DNN-Tuner
to become increasingly demanding as iterations progress.

For fixing underfitting, there are different TAs (Table 2). Apart from de-
creasing the learning rate, the remaining TAs aim at increasing the learning
capability of the network. Besides increasing the number of neurons and the
addition of fully connected layers which are self explicative, we may add a con-
volutional block composed of a sequence of two convolutional layers followed
by a pooling and dropout layer.

3.3 Increasing Loss

Symbolic DNN-Tuner uses Early Stopping, so, if at a certain iteration the
loss starts growing, this means that the learning rate is probability too high.
In this case, Symbolic DNN-Tuner applies a TA that aims at reducing the
learning rate’s search space by eliminating all values that are larger than the
last chosen.

3.4 Fluctuating Loss

The oscillation in the loss is usually due to the batch size. When the batch size
is 1, oscillation can occur and the loss will be noisy. When the batch size is the
complete dataset, the oscillation will be minimal because each update of the
gradient should improve the loss function monotonically (unless the learning
rate is set too high).

When this behaviour is detected, a TA that aims at shrinking the batch
size’s search space is applied, to make sure larger values are selected in the
next iterations.

3.5 Management of the Learning Rate

For the correct management of the learning rate, we exploit the relation be-
tween the loss and the learning rate [32], as can be seen in Figure 1. From
the trend of the loss, Symbolic DNN-Tuner can diagnose if the learning rate
is too high or too low. For doing this, the algorithm computes the integral of
the loss and the line between the initial and the final loss, that is AUL and

Symbolic DNN-Tuner 9

Fig. 1: Relation between loss and learning rate.

AULL respectively. Then the absolute difference between the two is computed.
The next step is to check whether the difference is greater or less than two
thresholds as you can see in Equation 8.

AUL =

∫
loss AULL =

∫
line (6)

R = |AULL−AUL| (7)

Problems =


too large lr if R > 3AULL

4

too small lr if R < AULL
4

good lr otherwise

(8)

Figures 3 and 4 shows the difference between the AUL and AULL in the
three main cases of good, high and low learning rate. R changes considerably
depending on the shape of the loss and therefore depending on the learning
rate. When the diagnosis is too large lr, a TA that removes large values from
the learning rates search space is applied. On the contrary, when the diagnosis
is too small lr, a TA that removes the small values from the learning rates
search space is applied.

10 M. Fraccaroli et al.

(a) AUL (b) AUL

Fig. 2: AUL (light yellow area) and difference displayed in Equation 7 (yellow
area) when learning rate is good.

(a) AUL (b) AUSL

Fig. 3: AUL (light yellow area) and difference displayed in Equation 7 (yellow
area) when learning rate is high.

(a) AUSL (b) AUSL

Fig. 4: AUL (light yellow area) and difference displayed in Equation 7 (yellow
area) when learning rate is low.

Symbolic DNN-Tuner 11

4 Symbolic DNN-Tuner

Symbolic DNN-Tuner is a system to drive the training of a Deep Neural Net-
work, analysing the performance of each training experiment and automatizing
the choice of HPs to obtain a network with better performance. It only requires
an initial definition of the network architecture, a space of values for the HPs
to be optimized and the dataset for training and validation. The system starts
with a given set of rules with default weights (which change by LFI, after each
training and diagnosis phase). These rules are written in PLP, and implement
Table 2. A sample of these rules is given in Listing 2 and Listing 4.

Symbolic DNN-Tuner exploits BO for the choice of HPs and applies a
performance analysis at the end of each training and validation session in
order to identify possible problems such as overfitting, underfitting or incorrect
learning rate configurations as described in Section 3.

By analyzing the behaviour of the network, it is possible to identify some
problems (e.g., overfitting, underfitting, etc.) that BO is not able to avoid
because it works only with a single metrics (validation loss or accuracy, training
loss or accuracy). When Symbolic DNN-Tuner diagnoses these problems, it
changes the search space of HP values or the architecture of the network by
appling TAs to drive the DNN to a better solution.

4.1 Architecture

Symbolic DNN-Tuner is composed by two main parts: a Neural Block that
manages the neural network, the HPs search space and the application of the
TAs, and a Symbolic Block(where STRs are implemented in Probabilistic Logic
Programming, PLP for short) that, on the basis of the network performance
and computed metrics after each training, diagnoses problems and identifies
the (most probable) TAs to be applied on the network architecture.

In the beginning, probabilistic weights of STRs are set manually, and then
they are refined, after each training, via Learning from Interpretations (LFI)
on the basis of the improvements obtained or not, for each TA applied in
previous training. The schema of Symbolic DNN-Tuner and of its blocks is
shown in Figure 5.

STRs are probabilistic rules that map problems into resolutive actions
(TAs) as defined in Table 2, and their weights are learned by LFI [25].

12 M. Fraccaroli et al.

BO HPs
choice

DNN training
& validation

Symbolic
Analysis

Improvement
checkerLFI

Choice of TAs

Application
of the TAs

Neural
Block

Symbolic
Block

Fig. 5: Symbolic DNN-Tuner execution pipeline with Neural Block and Sym-
bolic Block. In the Figure is shown the Symbolic DNN-Tuner’s pipeline and
the steps between Neural and Symbolic block.

4.2 Algorithm

At each iteration, Symbolic DNN-Tuner trains and validates the neural net-
work means of BO. Once training and validation have been done, the algorithm
checks if the training and validation have achieved better results than the pre-
vious training (the training of the neural network performed in the previous
iteration of Symbolic DNN-Tuner) in terms of accuracy and loss (line 12 in
Algorithm 1). This improvement check is used to build the training set for
LFI. In fact, at each iteration, a new point is added to the training set for LFI
and parameter learning is rerun. Then, the new weights of the STRs are placed
in the symbolic program and the diagnosis starts. The symbolic analysis (line
22 in Algorithm 1) returns the TAs to be applied to the network architecture
and/or HPs search space.

After each training, the BO status is saved, so that we can resume it for the
new training of the network in the next iteration of Symbolic DNN-Tuner. The
importance of starting a new training with a resumed BO status is that BO
works by maintaining some kind of memory of the experience of past training
and, in this way, it will choose the HPs values in an optimized way. This is
possible only if the HPs search space or the neural network architecture has
not changed.

Symbolic DNN-Tuner 13

Algorithm 1 Symbolic DNN-Tuner

1: procedure Symbolic DNN Tuner(S,M, n, PM)
2: Iteration← 0
3: Ckpt← ∅
4: (Ckpt,R,H)← BOs(S,M)
5: (NewM,NewS)←Analysis Tuning(R,H, PM)
6: while Iteration ≤ n do . Symbolic DNN-Tuner main loop
7: if NewM 6= M then
8: (Ckpt,R,H)← BOs(S,NewM) . New training with BO from scratch
9: else

10: (Ckpt,R,H)← BOr(NewS,NewM,Ckpt) . New training with a restored
11: end if . - status of BO
12: Improve← ImprovementChecker(R,DB)
13: PM ← LearnFromInt(Improve, SymbolicDiagnosis, SymbolicTuning)
14: (NewM,NewS)←Analysis Tuning(R,H, PM)
15: Iteration← (Iteration + 1)
16: end while
17: end procedure
18:
19: function Analysis Tuning(R,H, PM)
20: DB ← saveResult(DB,R)
21: (AUL,AULL)← Areas(H)
22: (SymDiagnosis, SymTuning)← SymbolicAnalysis([H,R,AUL,AULL],PM)
23: (NewM,NewS)← Tuning(SymDiagnosis, SymTuning)
24: return (NewM,NewS)
25: end function

Due to the sequential application of the TAs, there are some possible dan-
gerous feedback loops. This problem can occur specifically with the TAs for
the management of the learning rate (increasing and decreasing of the learn-
ing rate) or with the TAs to fix the underfitting. Thanks to the management
described in Section 3.5, possible loops on learning rate are avoided. For TAs
to fix the underfitting, thresholds have been set to prevent loops that lead to
too large networks.

Algorithms 1 encapsulates the whole Symbolic DNN-Tuner’s process. With
BOs and BOr we refer respectively to the functions that applies BO from
scratch and BO with resumed status respectively. With S, M , n and PM we
refer respectively to the search space of HPs values, initial neural network,
number of cycles of the algorithm and the Probabilistic Model coded into
Symbolic DNN-Tuner. Iteration is the counter of the iteration of Symbolic
DNN-Tuner. Ckpt is a checkpoint of the Bayesian Algorithm that can be used
to restore the state of the BO.

BOs, receiving S and M or NewM , returns the checkpoint of the BO, the
results of the evaluation of the trained network in terms of loss and accuracy
R (R is the tuple (Acc, Loss)) and the history H of the loss and accuracy in
both training and validation. BOr, receiving the new restricted search space
NewS, the new neural network model NewM and Ckpt, perform the same
computation as BOs but starting from a checkpoint rather than from scratch.

14 M. Fraccaroli et al.

Accuracy/Loss –
Training & Validation

(R, H, AUL, AULL)

Improvement Checker

Facts Diagnosis

Evidence LFI Program

Tuning Tuning Actions
(TAs)

Inference

1

2

3

4

Fig. 6: Symbolic Block of Symbolic DNN-Tuner. The numbers mark the order
of execution.

The results R are stored in the database DB. Improve is a boolean value
indicating whether there was an improvement over the previous iteration. PM
is updated by the Learning From Interpretation (LearnFromInt) function af-
ter each iteration of the algorithm. This step can be applied after the first iter-
ation of the whole algorithm because we need to have the SymbolicDiagnosis
and SymbolicTuning to performing the LearnFromInt function and learn
the weights of the STRs. These two variables are obtained from the previ-
ous tuning step of the algorithm. The LearnFromInt and SymbolicAnalysis
functions from line 19 of Algorithm 1 will be explained in detail in the next
section. AUL and AULL will be useful for the analysis of the learning rate.
NewM and NewsS are the new model and the new restricted search space
obtained after the application of the TA, respectively.

4.3 Symbolic Section

The Symbolic Block performs LearnFromInt and SymbolicAnalysis function
in Algorithm 1. This block analyses the network metrics (R, H, AUL and
AULL in Algorithm 1), producing a diagnosis and, from this, returns the TAs
to be applied. In the following, we describe in more detail how STRs have been
implemented in PLP and how their weights are calibrated by exploiting LFI.

The Symbolic Block, is composed of a PLP program with three parts:
Facts, Diagnosis and Tuning (FACTS, DIAGNOSIS and TUNING sections in List-
ing 4). A sample program is shown in Listing 4. The whole logic program is
dynamically created by the union of these three parts at each iteration of the
Algorithm 1, as can be seen in Figure 6. Facts memorizes R, H, AUL and
AULL obtained from the Neural Block (arc 1 in Figure 6). The Diagnosis

Symbolic DNN-Tuner 15

section encapsulates the code for diagnosing the DNNs behaviour problems.
Finally, the Tuning section is composed by the STRs. Facts, Diagnosis and
Tuning form the symbolic program. Thanks to ProbLog inference, we can
query this program and obtain the TAs (arc 3 in Figure 6). And finally, TAs
are passed to the Neural Block and applied on the DNN structure or the HPs
search space.

Each STR encapsulates a TA associated with a problem (see the associa-
tions in Table 2). TAs and problems of Table 2 are mapped into arguments
of symbolic tunining rules, occurring in their head and body, respectively, as
shown in Listing 2. Each STR has a weight which determines the probability
of application of its TA, in case the associated problem is diagnosed. In the
Tuning section, each STR is a rule such as those described in Listing 2.

Listing 2: STRs in the symbolic part of Symbolic DNN-Tuner

0.7:: action(data_augment):- problem(overfitting).

0.3:: action(decr_lr):- problem(underfitting).

0.8:: action(inc_neurons):- problem(underfitting).

0.4:: action(new_conv_layer):- problem(underfitting).

Listing 2 shows a subset of all STRs (see Tuning section in Listing 4 for a
complete version of Listing 2). The problem(...) predicate is defined in the
Diagnosis section of the Symbolic Block, see Listing 4.

The probabilistic weights are learned from the experience (evidences) gained
from previous iterations. This experience becomes the set of training examples
for the LFI program. Then, the LFI program is composed of two parts: the
program and the evidences obtained from the ImprovementChecker module,
as shown in Listing 3:

Listing 3: Learning From Interpretation part of Symbolic DNN-Tuner

% Program

t(0.5):: action(data_augment).

t(0.2):: action(decr_lr).

t(0.85):: action(inc_neurons).

t(0.3):: action(new_conv_layer).

- - - - - - - - - - - - - - - - - - - -

% Evidence

evidence(action(data_augment), True).

evidence(action(decr_lr), False).

This file is built dynamically at each iteration of Algorithm 1. After each
training, Symbolic DNN-Tuner checks the improvement of the network with
the ImprovementChecker module. The improvement (Improve in the Algo-
rithm 1) is a Boolean value and it is used to build the evidence. The aim is
to reward with greater probability those TAs that have led to improvements.
In detail, in Figure 7 we can see that, starting from a program like Listing

16 M. Fraccaroli et al.

t(0.5)::action(data_augm).
t(0.85)::action(decr_lr).
...

evidence(action(data_augm), True).
evidence(action(decr_lr), False).
...

0.7::action(data_augm):- problem(overfitting).
0.6::action(decr_lr):-problem(underfitting).

0.7::action(data_augm).
0.6::action(decr_lr).
...

Parameter learning (LFI)

Updating the probability in the head
of STRs.

Fig. 7: Learning From Interpretation pipeline. In the middle rectangle, in blue,
we can see the learned parameters after the LFI.

3, learning the parameters of this program, we can obtain the new values of
probability of applying the TA. After that, we can update the probability in
the head of the STRs. In this way, Symbolic DNN-Tuner can learn which TA
was better and consequently favours it over the others.

Finally, with the complete and updated symbolic program, we can use
ProbLog inference and query the program for the probabilities of given query
atoms, say, query(problem()) and query(action()). For clarity, an extract
of ProbLog code is provided in Listing 4.

In the rest of this Section, we show an extract of ProbLog code used in
Symbolic DNN-Tuner.

Listing 4: Extract of Logic section of Symbolic DNN-Tuner

% FACTS --
a([0.0529399998486042 , 0.0710360012948513 ,
0.6266616476927525 , 0.6298289950701192 , ...]).
va([0.0191 , 0.0593 , 0.1797 , 0.2304 , 0.2512 , 0.28,
0.5261 , 0.5339 , 0.5273 , ...]).
l([4.776382889623642 , 4.218988112640381 , 3.960466429057121 ,

Symbolic DNN-Tuner 17

1.8257129939079284 , ...]).
vl ([5.670237278938293 , 4.4710672222614285 ,
2.000358765614033 , 1.9812814263105392 , ...]).
itacc (0.10625000000000001).
itloss (0.4125).

% DIAGNOSIS --
abs2(X,Y) :- Y is abs(X).
isclose(X,Y,W) :- D is X - Y, abs2(D,D1), D1 =< W.
gap_tr_te_acc :- a(A), va(VA), last(A,LTA), last(VA,ScoreA),
Res is LTA - ScoreA , abs2(Res ,Res1), Res1 > 0.2.
gap_tr_te_loss :- l(L), vl(VL), last(L,LTL), last(VL ,ScoreL),
Res is LTL - ScoreL , abs2(Res ,Res1), Res1 > 0.2.
low_acc :- va(A), itacc(Tha), last(A,LTA),
Res is LTA - 1.0, abs2(Res ,Res1), Res1 > Tha
high_loss :- vl(L), itloss(Thl), last(L,LTL), \+ isclose(LTL ,0,Thl).

% PROBLEMS ---
problem(overfitting) :- gap_tr_te_acc; gap_tr_te_loss.
problem(underfitting) :- high_loss; low_acc.

% TUNING ---
action(reg_l2) :- problem(overfitting).
0.545454545454545:: action(inc_dropout):- problem(overfitting).
0.0:: action(data_augment):- problem(overfitting).
0.3:: action(decr_lr):- problem(underfitting).
0.0:: action(inc_neurons):- problem(underfitting).
0.545454545454545:: action(new_fc_layer):- problem(underfitting).
0.4:: action(new_conv_layer):- problem(underfitting).

% QUERY --
query(problem(_)).
query(action(_)).

Listing 4 shows a portion of the logic program of Symbolic DNN-Tuner.
The first part contains the Facts. They describe the history of the accuracy
and the loss during training phase and validation phase (a([]), l([]) and
va([]) and vl([]) respectively). itacc() and itloss() are two threshold
used to diagnose underfitting (see Section 3).

The Diagnosis section contains some utility functions and examples of
clauses used for the analysis applied to Facts. The clauses are used to catch
some gaps between training and validation phases of accuracy and loss, and
to identify if loss is too high or accuracy too low. With these clauses, we can
identify the problems encountered through the clauses found in the Problems
section.

At the end, there are the STRs containing the tuning actions (TAs) (Tun-
ing section), each with its probability in the head of the clauses. For exam-
ple, if gap tr te acc or gap tr te loss is true, this means that there is a
gap between training and validation accuracy or loss larger than 0.2 (e.g.,
training accuracy is 0.8 and validation accuracy is 0.5). This means that
problem(overfitting) is true, then overfitting is diagnosed and the clauses
with body true are the following in the Listing 5:

Listing 5: Clauses with body true

action(reg_l2) :- problem(overfitting).
0.545454545454545:: action(inc_dropout):- problem(overfitting).
0.0:: action(data_augment):- problem(overfitting).

18 M. Fraccaroli et al.

By querying the program with query(problem()) and query(action())

we retrieve the problems and the TAs. In this case we retrieve overfitting with
query(problem()) and L2 regularization, increment dropout and data aug-
mentation each with its probability of application with query(actions()).

5 Experiments

In this section we present the results obtained from the various experiments.
The code is available at https://github.com/micheleFraccaroli/Symbolic_
DNN-Tuner.git. Symbolic DNN-Tuner was tested on three different datasets:
CIFAR10 [33], CIFAR100 [34] and CIMA CIM, and compared to classic BO.
On CIFAR10, Symbolic DNN-Tuner was also compared with Efficient Neural
Architecture Search (ENAS) [35], Differentiable Architecture Search (DARTS)
[36] and Autokeras1 which is one of the most widely used AutoML systems
[37]. The ENAS experiments exploits the micro search space and macro search
space [35]. All NAS algorithms was implemented with Neural Network In-
telligence (NNI)2 toolkit provided by Microsoft, except Autokeras. In these
experiments, Convolutional Neural Networks (CNNs) were used as DNNs.

CIFAR10 contains 60000 32x32 color images divided in 10 classes. In this
experiment we have used CIFAR10 with 50000 training images and 10000
validation images. CIFAR100 is the same of CIFAR10 but divided in 100
classes instead of 10. CIMA CIM is a dataset provided by CIMA S.P.A3 with
3200 training images and 640 of validation images of size 256x128. These
images are facsimiles of Euro-like banknotes. CIMA CIM has 16 classes that
represent the denomination and orientation of the banknote (e.g., 5 front,
5 rear, 10 front, 10 rear, etc).

All experiments were performed on the GALILEO cluster provided by
Cineca 4, equipped with Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz and
Nvidia K80 GPUs. For each experiment, early stopping was set. Each experi-
ment had a fixed duration of 8 hours. This means that Symbolic DNN-Tuner,
BO and the NASs algorithms run for 8 hours consecutively at most.

The first experiment was performed using the CIFAR10 dataset. Symbolic
DNN-Tuner and BO start with a neural network with two blocks composed
by two convolutional layers, a max-pooling layer, a dropout and two fully con-
nected layers separated by a dropout layer, the second fully connected layer
is the output. The initial hyper-parameters to be set by the algorithm are
the number of the neurons in the convolutional and fully connected layers,
the values of the Dropout layers, the learning rate, the batch size, the acti-
vation functions and the optimizator. The size of the search space depends

1 Autokeras: https://autokeras.com/
2 NNI: https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
3 CIMA: http://www.cima-cash-handling.com/it/
4 Cineca: https://www.cineca.it/

https://github.com/micheleFraccaroli/Symbolic_DNN-Tuner.git
https://github.com/micheleFraccaroli/Symbolic_DNN-Tuner.git

Symbolic DNN-Tuner 19

Table 3: CIFAR10 - Symbolic DNN-Tuner

Step
Training validation Diagnosis TA

Accuracy Loss Accuracy Loss

1 0.9315 0.1958 0.793 0.7004 overfitting reg l2 & batch norm
data augm

underfitting inc neurons
2 0.943 0.1648 0.8812 0.3658 overfitting reg l2 & batch norm

data augm
floating loss inc batch size

3 0.8715 0.365 0.8364 0.4968 underfitting inc neurons
floating loss decr lr

4 0.9565 0.1287 0.8578 0.4742 overfitting reg l2 & batch norm
data augm

floating loss decr lr
5 0.8967 0.2946 0.8759 0.3711 floating loss decr lr
6 0.8902 0.3129 0.8655 0.3916 floating loss decr lr
7 0.9435 0.1678 0.8692 0.3900 overfitting reg l2 & batch norm

data augm
underfitting inc neurons
floating loss decr lr

8 0.9549 0.1348 0.8768 0.4021 overfitting reg l2 & batch norm
data augm

floating loss decr lr
9 0.9699 0.0999 0.8731 0.408 overfitting reg l2 & batch norm

data augm
underfitting inc neurons
floating loss decr lr

10 0.9741 0.07971 0.8836 0.3925 overfitting reg l2 & batch norm
data augm

underfitting inc neurons
floating loss decr lr

on hyper-parameter. The domains of HPs are as follows. The size of the first
and second convolutional layers are between 16 and 64 and between 64 and
128 respectively. The domains of the rate of dropout for the first and second
convolutional layers are [0.002,0.3] and [0.03,0.5] respectively. The size of the
fully connected layers is between 256 and 512. The domain of the learning rate
is [10−5,10−1]. The choice for the activation functions are: ReLU, ELU and
SELU. The choice for optimizers are: Adam, Adamax, RMSprop and Adadelta.
For ENAS ([35] Sect. 3.2) and DARTS ([36] Appendix A.1.1), NNI uses the
default search space in the original paper for CIFAR10. Autokeras starts with
three-layers CNN. Each convolutional layer is actually a convolutional block
of a ReLU layer, a batch-normalization layer, the convolutional layer, and a
pooling layer. All the convolutional layers are with kernel size equal to three,
stride equal to one, and number of filters equal to 64 [37].

In Table 3 (in bold the best result) we show the results of the execution of
Symbolic DNN-Tuner for every iteration: accuracy and loss in both phases, the
diagnosis of this iteration and the TAs for the next iteration (i.e., the results
of step 2 is the result of the application of TA of step 1). As can be seen, the

20 M. Fraccaroli et al.

Table 4: CIFAR10 - Bayesian Optimization

Step
Training Validation

Accuracy Loss Accuracy Loss

1 0.9762 0.06377 0.7776 1.046
2 0.09708 2.307 0.1 2.3078
3 0.1008 4.107 0.1 3.72
4 0.9133 0.2379 0.7655 0.9343
5 0.09874 2.303 0.1 2.303
6 0.7834 0.618 0.7404 0.7616
7 0.09842 2.303 0.1 2.303
8 0.1008 8.641 0.1 3.377
9 0.7599 0.6915 0.718 0.8171
10 0.888 0.3272 0.7824 0.8229
11 0.9609 0.1094 0.7758 1.036
12 0.6628 0.9813 0.6419 1.037
13 0.102 2.337 0.1 2.329
14 0.7411 0.7453 0.7327 0.7729
15 0.8633 0.378 0.7809 0.7518

(a) Accuracy (b) Loss

Fig. 8: Best results of Symbolic DNN-Tuner and Bayesian Optimization on
CIFAR10.

f

TA reg l2 & batch norm to fix the overfitting is always applied regardless of
other TA once overfitting is diagnosed. This is because using a regularization
and a batch normalization in any case does not lead to worsening.

In Table 4 (in bold the best result) we show the results of the application
of standard BO on the same network and same dataset of the previous exper-
iment. Figure 8 compares the best results of Symbolic DNN-Tuner and BO on
CIFAR10 graphically.

Table 5 show a recap of the experiments performed on the dataset CI-
FAR10. It compares Symbolic DNN-Tuner with standard BO, ENAS with
both Macro and Micro search space, DARTS and Autokeras. Only DARTS

Symbolic DNN-Tuner 21

Table 5: CIFAR10 - Comparison algorithms

Algorithms Val. accuracy Val. loss

Symbolic DNN-Tuner 0.8836 0.3925
Bayesian Opt. 0.7824 0.8229

ENAS Macro search 0.4520 1.6540
ENAS Micro search 0.4887 1.6711
DARTS 0.9554 0.1526
Autokeras 0.9458 0.2507

(a) Accuracy (b) Loss

Fig. 9: Best results of Symbolic DNN-Tuner and Bayesian Optimization on
CIFAR100.

and Autokeras outperform Symbolic DNN-Tuner in 8 hours of execution on
CIFAR10.

From the CIFAR10 experiment, we can see that Symbolic DNN-Tuner
does not always obtain the networks with the best performances but, unlike
the BO and NAS methods, Symbolic DNN-Tuner guarantees an explanation
of the actions it performs during its operation as shown in Table 3. At each
iteration, we can see that a certain TA is applied to address a certain problem
that is identified during the diagnosis phase.

The second experiment was performed on the CIFAR100 dataset. The ini-
tial network is the same as in the previous experiment. Tables 6 and 7 show
the progression of Symbolic DNN-Tuner and BO respectively (in bold the best
results), and Figure 9 compares the best results of Symbolic DNN-Tuner and
BO graphically. Table 6 shows that the increase in the number of classes w.r.t.
the number of images in the dataset leads to a worsening of the quality of
the training in terms of accuracy and loss. By comparing Table 6 and Table
7 it can be seen how Symbolic DNN-Tuner outperform BO in terms of both
accuracy and loss on CIFAR100.

22 M. Fraccaroli et al.

Table 6: CIFAR100 - Symbolic DNN-Tuner

Step
Training validation Diagnosis STR

Accuracy Loss Accuracy Loss

1 0.7121 1.039 0.4067 2.624 overfitting reg l2 & batch norm
underfitting data augm

inc neurons
2 0.7199 0.98 0.6238 1.443 overfitting reg l2 & batch norm

underfitting data augm
floating loss inc neurons

inc batch size
3 0.7953 0.6752 0.6496 1.33 underfitting inc neurons

underfitting data augm
floating loss inc neurons

inc batch size
4 0.8353 0.5786 0.6056 1.548 overfitting reg l2 & batch norm

underfitting data augm
inc neurons

5 0.6656 1.157 0.6324 1.309 underfitting inc neurons
floating loss inc batch size

6 0.6852 1.068 0.6425 1.299 overfitting reg l2 & batch norm
underfitting data augm

inc neurons
floating loss inc batch size

7 0.663 1.156 0.6362 1.324 underfitting inc neurons
floating loss inc batch size

Table 7: CIFAR100 - Bayesian Optimization

Step
Training Validation

Accuracy Loss Accuracy Loss

1 9.62e− 3 5.628 1e− 2 5.691
2 0.475 2.017 0.4065 2.391
3 9.62e− 3 4.935 1e− 2 4.768
4 9.86e− 3 5.087 1e− 2 5.035
5 0.4634 2.061 0.4247 2.26
6 0.4981 1.911 0.4107 2.365
7 0.9612 0.13 0.4487 3.446
8 9.82e− 3 4.698 1e− 2 4.685
9 0.8432 0.5023 0.4594 2.524
10 0.7943 0.7538 0.4216 2.633
11 0.8226 0.5973 0.3923 2.956
12 0.8304 0.5655 0.3869 3.729
13 0.692 1.056 0.4901 2.079
14 0.8143 0.6264 0.4472 2.692
15 0.9771 0.08094 0.4483 3.766

Symbolic DNN-Tuner 23

The last two experiments was performed on the CIMA CIM dataset. This
was used to test Symbolic DNN-Tuner on an industrial, real case. To make this
experiment as similar as possible to a production environment, the CIMA CIM
validation dataset has been degraded. In this experiment, in 8 hours, both
Symbolic DNN-Tuner and BO have performed more than fifty trainings, then,
for simplicity, only the best trainings from the experiment will be shown for
both systems.

In the first experiment on the CIMA CIM dataset, both Symbolic DNN-
Tuner and BO starts with a small neural network with only one convolutional
block and, at the end of the network, two fully connected layers divided by a
dropout layer, the second fully connected layer being the output. The results
are shown in Figure 10. In this experiment, Symbolic DNN-Tuner starts with
the network previously described and ends with a network with two convolu-
tional blocks (two convolutional layers, a max-pooling layer and dropout at the
end) and at the end of the network, four fully connected layers plus a dropout
layer and a fully connected layer for the output. BO, instead, keeps the same
network because is not able to modify the architecture of the network. The
network obtained with Symbolic DNN-Tuner shows a irregular behaviour in
the first part of training that is more fluctuating than the one obtained with
BO. After the 25th training cycle, we note how the network obtained by Sym-
bolic DNN-Tuner shows a higher accuracy and a lower loss than that obtained
by BO (Figure 10).

In the second experiment on the CIMA CIM dataset, Symbolic DNN-Tuner
produces the same network as the first experiment on this dataset. BO, instead,
starts with a neural network with two blocks composed by two convolutional
layers, a max-pooling layer, a dropout and two fully connected layers separated
by a dropout layer, the second fully connected layer being the output. The
results are shown in Figure 11. As in the previous experiment, Symbolic DNN-
Tuner shows a behaviour in the first part of training that is more fluctuating
than the one obtained with BO. The network obtained by BO shows the best
results around the 10th training cycle. After that, it begins to deteriorate
showing evident signs of overfitting (Figure 11).

24 M. Fraccaroli et al.

(a) Accuracy (b) Loss

Fig. 10: Best results of Symbolic DNN-Tuner and Bayesian Optimization on
CIMA CIM dataset in the the part one of the experiment.

(a) Accuracy (b) Loss

Fig. 11: Best results of Symbolic DNN-Tuner and Bayesian Optimization on
CIMA CIM dataset in the part two of the experiment.

In all the performed experiments, it can be seen that Symbolic DNN-Tuner
shows better results by analysing the performance of each network that it
trains. See Figures 10 and 11.

6 Related Work

In the Machine Learning automation scenario, we can distinguish two main
work areas: the HPO algorithm and the Neural Architecture Search (NAS)
algorithm [38]. The first works only on the HPs that govern the main settings of

Symbolic DNN-Tuner 25

Machine Learning systems (including Deep Learning) for the training phases.
The latter works mainly on the DNNs architecture.

In the field of Deep Learning, the state-of-the-art of HPO algorithm are:
Grid Search, Random Search and BO. Grid search [39] is the basic method for
the HPO. It performs exhaustive research (also called brute-force research) on
the user-specified HPs search space. This algorithm performs new training for
each combination of the HPs and each training is independent of the others.
This allows it to run in parallel and guarantees to find the optimal configura-
tion but, Grid Search suffers from the curse of dimensionality. This problem
arises because the computational resources increase exponentially with the
number of hyper-parameters to set [39]. The application of this algorithm
with the actual DNNs is correlated with the huge amount of HPs to set (then
a huge number of possible configuration) and to the dimension of the mod-
ern DNNs architecture which could take a long time to complete the training
phase. This rise a time problem.

Random Search [40] performs a random search over the used defined HPs
search space. Random search leads to better results than the previous algo-
rithm due to the predetermined budget (the searching process stops when this
budget is reached). Random search may perform better especially when some
HPs are not uniformly distributed [39]. Unlike the Grid Search, this algorithm
does not guarantee to achieve the optimum, but it requires less computational
time while finding a reasonably good model in most cases [40].

BO is a Sequential Model-Based Optimization (SMBO) algorithm aimed
at finding the global optimum with the minimum number of trials. Its success
in optimizing the HPs of DNNs is because BO limits the number of training
of DNNs spending more time choosing the next set of HPs to try. For a most
detailed description of BO see Section 2. In literature, there are works that
apply this kind of HPO algorithm to DNNs [41,8,42].

NAS is the process of automating the design of DNNs architectures. It is
strictly correlated to HPO and AutoML. NAS methods have outperformed
manually designed architectures [43,44]. In literature, there are different ap-
proaches to discover new neural architectures. Given a search space for a NAS,
that is which neural architectures a NAS approach might discover, there are
different search strategies can be used to explore the space of neural architec-
tures. These strategies include: random search, BO [37], reinforcement learning
[35], gradient-based methods [36] and evolutionary algorithms [45] [38]. The
three main concepts of NAS are: Search Space, Search Strategy and Perfor-
mance Estimation Strategy. Search Space refers to all possible architectures
that can be generated by the NAS. Search Strategy refers to the methods to
explore the search space with the canonical exploration-exploitation trade-
off. Performance Estimation Strategy refers to the methods to measure the
performance of the built neural network [38]. We can group the NAS in two
families: the classical NAS and the one-shot NAS [46]. Classical NAS uses the
traditional search space approach, where each generated DNN runs as an in-

26 M. Fraccaroli et al.

dependent run. One-shot NAS algorithms use weight sharing among models in
neural architecture search space to train a supernet. That supernet embraces
many options for the final design rather than generating and training sev-
eral DNNs independently and uses this to select better models. This type of
algorithms reduces computational resource compared to the classical NAS al-
gorithm and are differentiable, allowing the use of gradient descent to optimize
them. The state-of-the-art of one-shot NAS are: Efficient Neural Architecture
Search (ENAS) [35], Differentiable Architecture Search (DARTS) [36], Single
Path One-Shot (SPOS) [47] and ProxylessNAS [48].

7 Conclusions

We have presented a system to automatically drive the training of a Deep
Neural Network, by automatizing the choice of hyper-parameters in order to
obtain a network with the best possible performance. This was achieved by
combining Bayesian Optimization with an analysis of the network performance
implemented by exploiting rule-based programming. In particular, tuning rules
have been implemented in the ProbLog language, and their weights calibrated
— after each training — by exploiting Learning from Interpretation. Sym-
bolic DNN-Tuner thus exploits probabilistic symbolic rules that identify, after
each training, the most appropriate tuning actions in response to diagnosed
problems. These tuning actions restrict the hyper-parameters search space
and/or update the network architecture without any human intervention. The
experiments show that Symbolic DNN-Tuner performs better than standard
Bayesian Optimization in terms of accuracy and loss, and also provides an
explanation of the possible reasons for network malfunctioning.

Acknowledgements The authors want to thank CIMA S.P.A for providing a real-use case
dataset to test the software developed in this work. The first author is supported by a PhD
scholarship funded by Emilia-Romagna region, under POR FSE 2014-2020 program. Authors
also acknowledge “SUPER: Supercomputing Unified Platform - Emilia-Romagna” project,
financed under POR FESR 2014-2020. This work was partly supported by the “National
Group of Computing Science (GNCSINDAM)”.

References

1. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter opti-
mization. In: Advances in neural information processing systems, pp. 2546–2554 (2011)

2. Montavon, G., Orr, G., Múller, K.R.: Neural networks: tricks of the trade, vol. 7700.
springer (2012)

3. Dewancker, I., McCourt, M., Clark, S.: Bayesian optimization primer (2015)
4. Michele Fraccaroli Evelina Lamma, F.R.: Symbolic dnn-tuner, a python and problog-

based system for optimizing deep neural networks hyperparameters. SoftwareX (2021).
Under submission

5. Frazier, P.I.: A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811
(2018)

6. Jalali, A., Azimi, J., Fern, X.Z.: Exploration vs exploitation in bayesian optimization.
CoRR abs/1204.0047 (2012). URL http://arxiv.org/abs/1204.0047

http://arxiv.org/abs/1204.0047

Symbolic DNN-Tuner 27

7. Rasmussen, C.E.: Gaussian processes in machine learning. In: Summer School on Ma-
chine Learning, pp. 63–71. Springer (2003)

8. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in neural information processing systems, pp. 2951–
2959 (2012)

9. Bishop, C.M.: Pattern recognition and machine learning. springer (2006)
10. Riguzzi, F.: Foundations of Probabilistic Logic Programming. River Publishers (2018)
11. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-

box functions. Journal of Global optimization 13(4), 455–492 (1998)
12. Sato, T., Kubota, K.: Viterbi training in prism. Theory and Practice of Logic Program-

ming 15(2), 147–168 (2015)
13. Riguzzi, F., Lamma, E., Alberti, M., Bellodi, E., Zese, R., Cota, G., et al.: Probabilistic

logic programming for natural language processing. In: URANIA@ AI* IA, pp. 30–37
(2016)

14. Fadja, A.N., Riguzzi, F.: Probabilistic logic programming in action. In: Towards inte-
grative machine learning and knowledge extraction, pp. 89–116. Springer (2017)

15. Mørk, S., Holmes, I.: Evaluating bacterial gene-finding hmm structures as probabilistic
logic programs. Bioinformatics 28(5), 636–642 (2012)

16. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its appli-
cation in link discovery. In: IJCAI, vol. 7, pp. 2462–2467. Hyderabad (2007)

17. Sato, T., Kameya, Y.: Prism: a language for symbolic-statistical modeling. In: IJCAI,
vol. 97, pp. 1330–1339 (1997)

18. Meert, W., Struyf, J., Blockeel, H.: Cp-logic theory inference with contextual variable
elimination and comparison to bdd based inference methods. In: International Confer-
ence on Inductive Logic Programming, pp. 96–109. Springer (2009)

19. Riguzzi, F.: Speeding up inference for probabilistic logic programs. The Computer
Journal 57(3), 347–363 (2014)

20. Gorlin, A., Ramakrishnan, C., Smolka, S.A.: Model checking with probabilistic tabled
logic programming. Theory and Practice of Logic Programming 12(4-5), 681–700 (2012)

21. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: In Proceedings of the 12th International Conference On Logic Programming
(ICLP’95. Citeseer (1995)

22. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I.,
Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs using
weighted boolean formulas. Theory and Practice of Logic Programming 15(3), 358–401
(2015)

23. Darwiche, A.: Sdd: A new canonical representation of propositional knowledge bases.
In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)

24. Dries, A., Kimmig, A., Meert, W., Renkens, J., Van den Broeck, G., Vlasselaer, J.,
De Raedt, L.: Problog2: Probabilistic logic programming. In: Joint european conference
on machine learning and knowledge discovery in databases, pp. 312–315. Springer (2015)

25. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic logic
programs from interpretations. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 581–596. Springer (2011)

26. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological)
39(1), 1–22 (1977)

27. Andrew Ngn Younes Bensouda Mourri, K.K.: Improving deep neural networks: Hyper-
parameter tuning, regularization and optimization

28. van Laarhoven, T.: L2 regularization versus batch and weight normalization. CoRR
abs/1706.05350 (2017). URL http://arxiv.org/abs/1706.05350

29. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift. CoRR abs/1502.03167 (2015). URL http://arxiv.

org/abs/1502.03167
30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a

simple way to prevent neural networks from overfitting. The journal of machine learning
research 15(1), 1929–1958 (2014)

31. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learn-
ing. Journal of Big Data 6(1), 60 (2019)

http://arxiv.org/abs/1706.05350
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

28 M. Fraccaroli et al.

32. Ou, M., Wei, H., Zhang, Y., Tan, J.: A dynamic adam based deep neural network for
fault diagnosis of oil-immersed power transformers. Energies 12(6), 995 (2019)

33. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced research)
URL http://www.cs.toronto.edu/~kriz/cifar.html

34. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-100 (canadian institute for advanced re-
search) URL http://www.cs.toronto.edu/~kriz/cifar.html

35. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search
via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

36. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

37. Jin, H., Song, Q., Hu, X.: Auto-keras: An efficient neural architecture search system.
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1946–1956 (2019)

38. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. arXiv
preprint arXiv:1808.05377 (2018)

39. Yu, T., Zhu, H.: Hyper-parameter optimization: A review of algorithms and applications.
arXiv preprint arXiv:2003.05689 (2020)

40. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of
Machine Learning Research 13(Feb), 281–305 (2012)

41. Korichi, Guillemot, M., Heusèle, C., Rodolphe: Tuning neural network hyperparame-
ters through bayesian optimization and application to cosmetic formulation data. In:
ORASIS 2019 (2019)

42. Bertrand, H., Ardon, R., Perrot, M., Bloch, I.: Hyperparameter optimization of deep
neural networks: Combining hyperband with bayesian model selection. In: Conférence
sur l’Apprentissage Automatique (2017)

43. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Aging evolution for image classifier archi-
tecture search. In: AAAI 2019 (2019)

44. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for
scalable image recognition. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8697–8710 (2018)

45. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier
architecture search. In: Proceedings of the aaai conference on artificial intelligence,
vol. 33, pp. 4780–4789 (2019)

46. Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding and sim-
plifying one-shot architecture search. In: International Conference on Machine Learning,
pp. 550–559 (2018)

47. Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path one-shot
neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420
(2019)

48. Cai, H., Zhu, L., Han, S.: Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332 (2018)

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Preliminaries
	DNNs Training Problems and Countermeasures
	Symbolic DNN-Tuner
	Experiments
	Related Work
	Conclusions

