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Abstract. Unlike most computer vision approaches, which depend on
hundreds or thousands of training images, humans can typically learn
from a single visual example. Humans achieve this ability using back-
ground knowledge. Rule-based machine learning approaches such as In-
ductive Logic Programming (ILP) provide a framework for incorporat-
ing domain specific background knowledge. These approaches have the
potential for human-like learning from small data or even one-shot learn-
ing, i.e. learning from a single positive example. By contrast, statistics
based computer vision algorithms, including Deep Learning, have no gen-
eral mechanisms for incorporating background knowledge. This paper
presents an approach for one-shot rule learning called One-Shot Hypoth-
esis Derivation (OSHD) based on using a logic program declarative bias.
We apply this approach to two challenging human-like computer vision
tasks: 1) Malayalam character recognition and 2) neurological diagno-
sis using retinal images. We compare our results with a state-of-the-art
Deep Learning approach, called Siamese Network, developed for one-
shot learning. The results suggest that our approach can generate human-
understandable rules and outperforms the deep learning approach with
a significantly higher average predictive accuracy.

1 Introduction

Deep Neural Networks (DNNs) [10, 19, 2] have demonstrated state-of-the-art re-
sults on many pattern recognition tasks, especially in image classification prob-
lems [12, 6]. However, recent studies [27] revealed major differences between hu-
man visual cognition and DNNs. For example, it is easy to produce images that
are completely unrecognizable to humans, though DNN visual learning algo-
rithms believe them to be recognizable objects with over 99% confidence [27].
Another major difference is related to the number of required training examples.
Humans can typically learn from a single visual example [15], unlike statistical
learning which depends on hundreds or thousands of images. Humans achieve
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this ability using background knowledge, which plays a critical role. By con-
trast, statistics based computer vision algorithms have no general mechanisms
for incorporating background knowledge.

The performance of DNNs in medical imaging analysis and clinical risk pre-
diction has been exceptionally promising. For example, recent evidence suggests
that certain neurological pathologies such as Alzheimer’s and Parkinson’s dis-
ease can be associated with retinal abnormalities [5, 21]. Nevertheless, despite
the many opportunities DNNs present for healthcare, their clinical use remains
limited as they suffer from the black-box situation. This constitutes a significant
problem for clinicians: a lack of understanding of the inner workings of such
methods renders it problematic to explain the diagnosis and treatment process
to their patients. Moreover, DNNs usually require large training data which are
not always available, for example in the diagnosis of neurological conditions,
which are highly heterogeneous and often involve comorbidities.

In this paper, we present an approach for one-shot rule learning called One-
Shot Hypothesis Derivation (OSHD) based on logic program declarative bias
which is first introduced in [31]. We apply this approach to two different the chal-
lenging tasks; Malayalam character recognition & neurological diagnosis using
retinal images. We have created a dataset for Malayalam hand-written charac-
ters which includes high level properties of the language based on the ’Omniglot’
dataset designed for developing human-level concept learning algorithms [16]. We
present character recognition as an extended work of [31]. For neurological di-
agnosis, we have collected the images from the UK Biobank [28] and extracted
retinal vascular features (RVFs). We compare our results with a state-of-the-
art Deep Learning approach, called Siamese Network [14], which is popular for
one-shot learning.

2 One-Shot Hypothesis Derivation (OSHD)

In this paper we adopt a form of ILP which is suitable for one-shot learning and
is based on using a logic program declarative bias, i.e. using a logic program to
represent the declarative bias over the hypothesis space. Using a logic program,
declarative bias has several advantages. Firstly, a declarative bias logic program
allows us to easily port bias from one problem to another similar problem (e.g. for
transfer learning). Secondly, it is possible to reason about the bias at the meta-
level. Declarative bias will also help to reduce the size of the search space for
the target concept or hypothesis derivation [1, 26]. We refer to this approach as
One-Shot Hypothesis Derivation (OSHD) which is a special case of Top-Directed
Hypothesis Derivation (TDHD) as described in [23].

Definition 1 (One-Shot Hypothesis Derivation). The input to an OSHD
system is the vector STDHD = 〈NT,>, B,E, e〉 where NT is a set of “non-
terminal” predicate symbols, > is a logic program representing the declarative
bias over the hypothesis space, B is a logic program representing the background
knowledge and E is a set of examples and e is a positive example in E. The fol-
lowing three conditions hold for clauses in >: (a) each clause in > must contain
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at least one occurrence of an element of NT while clauses in B and E must not
contain any occurrences of elements of NT , (b) any predicate appearing in the
head of some clause in > must not occur in the body of any clause in B and (c)
the head of the first clause in > is the target predicate and the head predicates
for other clauses in > must be in NT . The aim of an OSHD learning system is
to find a set of consistent hypothesised clauses H, containing no occurrence of
NT , such that for each clause h ∈ H the following two conditions hold:

> |= h (1)

B, h |= e (2)

The following theorem is a special case of Theorem 1 in [23].

Theorem 1. Given SOSHD = 〈NT,>, B,E, e〉 assumptions (1) and (2) hold
only if there exists an SLD refutation R of ¬e from >, B, such that R can be
re-ordered to give R′ = DhRe where Dh is an SLD derivation of a hypothesis h
for which (1) and (2) hold.

According to Theorem 1, implicit hypotheses can be extracted from the refuta-
tions of e. Let us now consider a simple example on learning a rule describing
the properties of a concept (alphabet).

Example 1. Let SOSHD = 〈NT,>, B,E, e〉 whereNT ,B , e and> are as follows:

NT = {$body}
B = b1 = property1(a)←
e = alphabet(a)←

> =


>1 : alphabet(X)← $body(X)

>2 : $body(X)← property1(X)

>3 : $body(X)← property2(X)

Given the linear refutation, R = 〈¬e,>1,>2, b1〉, we now construct the re-
ordered refutation R′ = DhRe where Dh = 〈>1,>2〉 derives the clause h =
alphabet(X)← property1(X) for which (1) and (2) hold.

The user of OSHD can specify a declarative bias > in the form of a logic
program. A general > theory can be also generated from user specified mode
declarations. Figure 1 represents a simplified example of user specified mode
declarations and the automatically constructed > theory.

The OSHD Learning algorithm can be described in 3 main steps:

1. Generate all hypotheses, He that are generalizations of e
2. Compute the coverage of each hypothesis in He

3. Build final theory, T , by choosing a subset of hypotheses in He that max-
imises a given score function (e.g. compression)

In step 1, He is generated using the OSHD hypothesis derivation described
earlier in this section.

The second step of the algorithm, computing the coverage of each hypothesis,
is not needed if the user program is a pure logic program (i.e. all relationships in
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modeh(alphabet(+image)).

modeb(has prop1(+image)).

modeb(has prop2(+image)).

> =


>1 : alphabet(X)← $body(X).

>2 : $body(X)←

>3 : $body(X)← has prop1(X), $body(X).

>4 : $body(X)← has prop2(X), $body(X).

Fig. 1: Mode declarations and a > theory automatically constructed from it

the background knowledge are self contained and do not rely on Prolog built-in
predicates). This is because, by construction, the OSHD hypothesis derivation
generates all hypotheses that entail a given example with respect to the user
supplied mode declarations. This implies that the coverage of a hypothesis is
exactly the set of examples that have it as their generalization. However, this
coverage computation step is needed for the negative examples, as they were not
used to build the hypothesis set.

For step 3, the compression-based evaluation function used for the experi-
ments in this paper is:∑

Covered Examples Weight− Total Literals (3)

The weight associated to an example may be defined by the user but by
default, positive examples have weight 1 and negative examples weight -1. In
general, negative examples are defined with a weight smaller than 0 and positive
examples with a weight greater than 0.

3 Siamese Neural Networks

In this paper, we use a state-of-the-art Deep Learning approach, called Siamese
Network [14], which has been developed for one-shot learning. The original
Siamese Networks were first introduced in the early 1990s by Bromley and Le-
Cun to solve signature verification as an image matching problem [4]. A Siamese
network is a Deep Learning architecture with two parallel neural networks with
the same properties in terms of weight, layers etc. Each network takes a dif-
ferent input, and their outputs are combined using an energy function at the
top to provide some prediction. The energy function computes a metric between
the highest level feature representation on each side (Figure 2). Weight tying
guarantees that two extremely similar images could not possibly be mapped by
their respective networks to very different locations in feature space because each
network computes the same function. Also, the network is symmetric, so that
whenever we present two distinct images to the twin networks, the top conjoin-
ing layer will compute the same metric as if we were to present the same two
images but to the opposite twin.

A Siamese network model is defined using a convolutional neural network
(CNN), mainly developed to work with image data. CNNs can be considered
as regularized versions of multilayer perceptrons. Multilayer perceptrons usually
mean fully connected networks; each neuron in one layer is connected to all
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Fig. 2: A simple 2 hidden layer Siamese Neural Network [14]

neurons in the next layer. We stack three layers: the convolutional Layer, pooling
Layer, and fully connected layer to form CNN.

– Convolutional layers apply a convolution operation to the input, passing
the result to the next layer. A convolution converts all the pixels in its recep-
tive field into a single value. For example, if one apply a convolution to an
image, the image size is decreased as well as information in individual fields
are brought together into a single pixel. The final output of the convolutional
layer is a vector.

– Pooling layers reduce the dimensions of data by combining the outputs
of neuron clusters at one layer into a single neuron in the next layer. Local
pooling combines small clusters. There are two common types of pooling in
popular use: max and average. Max pooling uses the maximum value of each
local cluster of neurons in the feature map, while average pooling takes the
average value.

– Fully connected layers connect every neuron in one layer to every neuron
in another layer. It is the same as a traditional multi-layer perceptron neural
network (MLP). The flattened matrix goes through a fully connected layer
to classify the images.

Koch et. al. [14] use a convolutional neural siamese architecture to classify
pairs of omniglot images. In the experiments of this paper, we have adopted
the same model as defined in [14]. Our standard model is a Siamese neural
network with L fully-connected layers each with Nl units, where h1,l represents
the hidden vector in layer l for the first twin, and h2,l denotes the same for the
second twin. We use exclusively rectified linear (ReLU) units in the first L − 1
layers. After the (L−1)th feed-forward layer, we compare the features computed
by each twin via a fixed distance function.
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4 One-Shot learning for Malayalam character recognition

We apply OSHD as well as Deep Learning (i.e. Siamese Network) to the challeng-
ing task of one-shot Malayalam character recognition. This is a challenging task
due to spherical and complex structure of Malayalam hand-written language.

4.1 Character recognition and human-like background knowledge

Malayalam is one of the four major languages of the Dravidian language fam-
ily and originated from the ancient Brahmi script. Malayalam is the official
language of Kerala, a state of India with roughly forty-five million people. Un-
like for other languages, there is currently no efficient algorithm for Malayalam
hand-written recognition. The handwriting recognition for Malayalam script is
a major challenge compared to the recognition of other scripts because of the
following reasons: presence of large number of alphabets, different writing styles,
spherical features of alphabets, and similarity in character shapes. We selected
the hand-written characters from the ’Omniglot’ dataset [16]. Sample Malay-
alam alphabets from our dataset are shown in Figure 3 (characters ’Aha’ and
’Tha’). Feature extraction is conducted utilizing a set of advanced geometrical
features [30] and directional features.

Geometrical Features Every character may be identified by its geometric
designations such as loops, junctions, arcs, and terminals. Geometrically, a loop
means a closed path. Malayalam characters contain more intricate loops which
may contain some up and downs within the loops itself. So we follow a concept
as shown in Figure 3(b). If the figure has a continuous closed curve then we
will identify it as a loop. Junctions may be defined as a meeting point of two or
more curves or line. It is easy for human to identify the junction from an image
as shown in Figure 3(c). As per dictionary definitions, an arc is a component
of a curve. So in our case, a path with semi opening will be considered as an
arc. Please refer to Figure 3(d) for more details. Terminals may be classified
as points where the character stroke ends, i.e. no more connection beyond that
point. Figure 3(e) is a self-explanatory example for the definition.

We have included the visual explanation for the geometrical feature extrac-
tion in Figure 3. We have selected two characters to explicate the features as
shown in Figure 3 and marked each geometrical features as we discussed. Table
1 will give an abstract conception about the dataset we have developed for the
experiments from the ’Omniglot’ dataset.

Directional Features Every character may be identified by its directional
specifications such as starting and ending points of the stroke. There are certain
unwritten rules for Malayalam characters, e.g. the writing always commences
from left and moves towards the right direction. Native Malayalam users can
easily identify the starting and ending point. However, we will need to consider
the starting and ending point as features so that these can be easily identified
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(a) Loop (b) Junction (c) Arc (d) Terminals (e) Start Point(f) End Point

Fig. 3: Human-like feature extraction criteria

without semantic knowledge of a character. The starting and ending points are
determined by standard direction properties. Figure 3(f) will give you an idea
about developing the directional features from an alphabet. As we discussed,
a user can identify both starting and ending point of the character displayed
in Figure 3(f) easily whereas the terminus point of Figure 3(e) is arduous to
determine.

4.2 Mode declarations

In this section, we define the OSHD specific details of the declarative bias, de-
fined by mode declaration and background knowledge representation used in
our experiments. The first step was to develop and represent the background
knowledge based on the concepts described in Section 4.1. Table 1 shows the
geometrical and directional features of 5 different alphabets. Here, we use the
same notations used in Progol [22] and Toplog [23].

For example, in our first experiment, alphabet(+character) is the head of the
hypothesis, where +character defines the character identifier character as an
input argument. We are using four predicates in the body part of the hypothesis
as shown in the listing 1.1. Note that +, -, # indicate input, output or a constant
value arguments.

Listing 1.1: Mode declarations

:− modeh (1 , a lphabet (+ charac t e r ) ) .
:− modeb (∗ , has gemproper t i e s (+character ,− p r o p e r t i e s ) ) .
:− modeb (∗ , has gemproper t i e s count (+ prope r t i e s ,

#geo feature name ,# i n t ) ) .
:− modeb (∗ , h a s d i r p r o p e r t i e s (+character ,− p r o p e r t i e s ) ) .
:− modeb (∗ , h a s d i r p r o p e r t i e s f e a t u r e (+ prope r t i e s ,

#d i r f ea ture name ,# f e a t u r e v a l u e ) ) .

The meaning of each modeb condition is defined as follows:

has gemproperties/2 predicate was used to represent the geometrical features
as defined in Table 1. The input argument character is the unique identifier
for an alphabet, properties refers to the property names.

has gemproperties count/3 predicate outlines the count of the particular fea-
ture associated with the alphabet. The properties indicate unique identifiers
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Table 1: Geometrical and Directional Properties

Character ID
Geometrical Properties Directional Properties

No. Loops No. Junctions No. Arcs No. Terminals Starting Point Ending Point

1 2 4 3 2 sw null

2 3 4 3 2 sw null

3 3 4 3 2 sw null

4 1 2 3 2 null se

5 1 3 3 2 nw se

for a particular geometrical property of a particular alphabet , geo feature name
refers to the property name and int stands for the feature count.

has dirproperties/2 predicate used to represent the directional features men-
tioned in table 1. The character is the unique identifier for the alphabet,
properties refers to the property names.

has dirproperties count/3 predicate outlines the count of a particular direc-
tional feature associated with the alphabet. The properties is a unique iden-
tifier for a particular property of a particular alphabet , dir feature name
refers to the property name and featurevalue stands for the feature vale.

5 One-Shot learning for neurological diagnosis using
retinal images

Recent evidence suggests that certain neurological pathologies such as Alzheimer’s
and Parkinson’s disease can be associated with retinal abnormalities [5, 21]. Reti-
nal fundus imaging and optical coherence tomography (OCT), powerful tech-
niques for imaging the retina and highly informative from a clinical perspective
[32], could therefore potentially be used for the early detection and diagnosis
of these diseases. This is interesting also from a practical perspective, because
retinal fundus photography and OCT are non-invasive, cheap, quick to perform,
highly sensitive and specific. Moreover, these methods provide digital outputs
that can be easily stored and analysed with modern AI tools. Indeed, a recent
study shows relatively high accuracy in the usage of AI for the diagnosis of
Alzheimer’s disease from retinal fundus images [29]. However, numerous chal-
lenges remain to be addressed, such as regarding the capability for humans to
understand the model, as well as the significant requirements for large amounts
of data.

Here, we use our proposed OSHD approach for model construction and re-
vision in retinal fundus image analysis. This approach has several benefits: it
provides human-understandable reasoning that enable the medical practitioner
to explain to the patient the computational diagnosis. Moreover, the OSHD
approach allows for the incorporation of patient-specific information (e.g. age,
weight, lifestyle, etc.) and so supports personalised treatments. Furthermore, the
OSHD approach requires much fewer samples for training than state-of-the-art
DNN techniques. This is a highly valuable feature particularly for the diagno-
sis of neurological conditions, which are highly heterogeneous and often involve
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comorbidities. Hence, the most relevant and well-suited datasets are usually of
limited size. The capability to make efficient use of limited datasets is there-
fore paramount for such computational methods. We here present a preliminary
demonstration for this proposed approach.

5.1 Retinal Vasculature Features

Table 2: Retinal Vascular Features (RVFs) with the reti-
nal zone of interest

Parameter Description Retinal
Zone

CRAE Central Retinal Arteriolar
Equivalent

B

CRVE Central Retinal Venular
Equivalent

B

AVR Arteriole-Venular ratio B

FDa Fractal Dimension arteriole C

FDv Fractal Dimension venular C

BSTDa Zone B Standard Deviation
arteriole

B

BSTDv Zone B Standard Deviation
venular

B

TORTa Tortuosity arteriole C

TORTv Tortuosity venular C

Fig. 4: Retinal zones considered in this
study. Three concentric zones were in-
troduced for the computation of retinal
fundus image features, i.e. zones A, B
and C [7].

Our selection of retinal vascular features (RVFs) for the analysis of the retinal
images is based on the study by Frost et al. [7] where significant differences were
found in specific RVFs between healthy controls and subjects with Alzheimer’s
disease. To simplify the derivation of a diagnostic algorithm, we decided to use
only a subset of these features in our experiments. In particular, Frost et al.
mentioned 13 RVF’s in their experiment, while we selected 9 relevant and well-
established features for our experiments. These selected RVFs are listed in table
2. Briefly, the RVFs were measured based on the width and branching geome-
try of retinal vessels. In accordance with [7], we introduced concentric zones of
interest A, B and C to compute the RVFs. Notably, the feature analysis did not
incorporate information from zone A (region from 0 to 0.5 disc diameters away
from the disc margin). The analysed two zones were 0.5–1.0 disc diameters away
from the disc margin (zone B, Figure 4) and 0.5–2.0 disc diameters away from
the disc margin (zone C, Figure 4). Restricting the measurements to these two
zones ensured that the vessels had attained arteriolar status. The measured zone
for each feature is listed in Table 2.

5.2 Retinal fundus image dataset

The participants for this study were selected from the UK Biobank resource
[28]. The UK Biobank recruited 500,000 people of ages between 40 and 69 to
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undergo a variety of tests and have their health followed throughout their lives.
Notably, only a subset of these participants had their retinas imaged (in total
84,767). Retinal imaging was conducted using the TOPCON 3D OCT 1000 Mk2
which simultaneously performs OCT and takes a fundus photograph. The images
produced are centred on the macula, have a 45 degree field of view and have the
dimensions 2,048 by 1,536.

5.3 Extraction of Subject Data and Background Knowledge (BK)
Preparation

Fig. 5: Demonstration of processing steps for vessel segmentation and artery vs.
vein classification

Extraction of subject-specific clinical information The vast majority of
the information about the participants was collated in the form of a large CSV
(Comma Separated Values) file, where each row represents a participant and
each column represents a data point. The UK Biobank online system provides
explanations for the codes used for the column names and the associated data.
Diagnoses in the dataset were encoded according to the International Classifica-
tion of Diseases, Tenth Revision (ICD-10). A detailed analysis of the participant
data file yielded 18 Alzheimer’s, 133 Parkinson’s and 54 vascular dementia suf-
ferers who satisfied these two conditions: they had (1) fundus images taken, and
(2) were diagnosed with exactly one of these three conditions. In addition to
images from these diseased subjects, we used images of 528 subjects that were
healthy with respect to these three conditions. Notably, we used only fundus
images of the left eye.

Optic Disc Localisation We followed an approach that uses pyramidal de-
composition based on the Haar-discrete wavelet transform in order to localize
the optic disc to certain regions. Template matching is then employed to further
localize the optic disc. This particular approach is detailed by Lalonde et al. [17].

Artery/Vein Classification The method we have used for artery/vein classi-
fication was developed by Galdran et al. [8]. In particular, we use a fully CNN
to classify pixels into four separate categories: background, vein, artery or un-
certain. Figure 5 shows the segmentation and artery/vein classification steps
applied to a sample image. In the image, arteries are shown in red, veins in blue,
and areas of uncertainty are coloured in green.
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Vascular Feature Extraction Retinal vascular features mentioned in ta-
ble 2 were extracted. To this end, vascular calibres were calculated for the six
most extensive arterioles and six largest venules. The standard deviation of the
width in zone B (BSTD) was calculated for the arteriolar and venular networks.
Summary measures of vascular equivalent calibre were also calculated (central
retinal arterial (CRAE) and venular (CRVE) equivalent calibre), based on the
improved Knudston–Parr–Hubbard formula [11, 13]. CRAE and CRVE repre-
sent the equivalent single-vessel parent calibre (width) for the six arterioles and
venules, respectively. From these indices, the arteriole-to-venule ratio (AVR) was
calculated (AVR = CRAE/CRVE). Natural patterns such as vessel networks of-
ten exhibit fractal properties, whereby they appear the same when viewed over a
range of magnifications. The fractal dimension (FD) describes the range of scales
over which this self-similarity is observed. In this study, the fractal dimension of
the retinal vascular network was calculated using the box-counting method [20].
Larger values reflect a more complex branching pattern. Retinal vascular tortu-
osity is defined as the integral of the curvature squared along the path of the
vessel, normalized by the total path length [9]. All vessels in the zone of interest
with a width > 40 µm were measured. The estimates were summarized as the
average tortuosity of the measured vessels. A smaller tortuosity value indicates
straighter vessels.

Data Encoding and Background Knowledge Preparation The RVF’s
from the measurement extraction step will be stored. During the data labelling
step, the distribution of each RVF is analysed and classified into three categories:
low, medium, and high. The next step is to prepare background knowledge from
these labelled data and will be done according to the mode definitions. Sample
background knowledge for a patient is displayed in listing 1.2

Listing 1.2: Sample BK for a retinal image using labelled RVF’s

c r a r t e r i o l a r e q u i v a l e n t ( pa t i en t i d 0 , high ) .
c r v e n u l a r e q u i v a l e n t ( pa t i en t i d 0 , low ) .
a v r a t i o ( pa t i en t i d 0 , high ) .
s d a r t e r i o l e ( pa t i en t i d 0 , medium ) .
sd venu la r ( pa t i en t i d 0 , low ) .
f d a r t e r i o l e ( pa t i en t i d 0 , low ) .
f d v en u l a r ( pa t i en t i d 0 , medium ) .
t o r t u o s i t y a r t e r i o l e ( pa t i en t i d 0 , low ) .
t o r t u o s i t y v e n u l a r ( pa t i en t i d 0 , low ) .

6 Experiments

In this section we evaluate the OSHD approach on two different applications.
The first application is complex character recognition, which is the extension of
an initial study presented in [31]. We have used 46 alphabets (46 classes) from
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the Malayalam language, and for each alphabet, 20 different handwritten images
are selected and divided equally into training and test sets.

The second application is a novel diagnosis approach for three neurodegen-
erative diseases, namely vascular dementia, Parkinson’s disease and Alzheimer’s
disease. We have used four different classes, as mentioned in section 5.3, and each
class contains 18 images, divided equally as training and test sets. Notably, this
study is highly innovative as it investigates the usage of modern machine learn-
ing based analysis of retinal images for the classification of neurodegenerative
diseases. In this section we test the following null hypotheses:

Null Hypothesis 1 OSHD cannot outperform Siamese Networks in one-shot
learning for complex character recognition.

Null Hypothesis 2 OSHD cannot outperform Siamese Networks in one-shot
learning for neurodegenerative disease identification.

Null Hypothesis 3 OSHD cannot learn human comprehensible rules for either
of applications in Null Hypotheses 1 and 2.

6.1 Materials and Methods

The OSHD algorithm in this experiment is based on Top-Directed Hypothesis
Derivation implemented in Toplog [23], and uses mode declarations and back-
ground knowledge which defined earlier in this paper. The Siamese Network used
in the experiment is based on the implementation described in [14].

The data, codes and configuration input files used in the experiments in this
section are available from: https://github.com/danyvarghese/One-Shot-ILP

We endeavoured to reiterate the same concept of working with both architec-
tures and repeated the experiments for different numbers of folds. Each fold con-
sists of a single positive example and n negative examples. In our experiments,
we use the term ’number of classes’ to indicate the total number of negative
examples (in addition to the one positive example) used for the cross-validation.

In order to reject the Null Hypotheses 1 and 2, we adapted an experimental
setting used for one-shot learning by Siamese Networks as in [14]. We follow a
’20-way N-class’ experimental setting for each dataset. In this setting, 20 is the
number of runs and N is the number of classes (N varies from 2 to 7 for character
recognition and 2 to 4 for neurodegenerative diseases).As we are doing one-shot
learning, we use one positive example at each run with negative examples which
are from the other classes (the X axis in the learning curves of Fig. 6). In the
following, we define specific parameter settings for each algorithm.

OSHD parameter settings The following Toplog parameter settings were
used in this experiment: clause length (value = 15) defines the maximum num-
ber of literals (including the head) of a hypothesis, evalfn (Value = compres-
sion) defines which function to use when scoring a clause. The default scoring
function is compression. positive example inflation multiplies the weights of
all positive examples by this factor. This parameter is set to 10 and 5 for char-
acter recognition and the neurodegenerative dataset, respectively, and negative
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example inflation multiplies the weights of all negative examples by this factor.
This parameter is set to 5 for both datasets.

Siamese Networks parameter settings For the implementation of the Siamese
Network, we followed the same setups used by Koch et al. [14]. Koch et al use
a convolutional Siamese network to classify pairs of ’Omniglot’ images, so the
twin networks are both CNNs. The twins each have the following architecture:
convolution with 64 (10 × 10) filters, ’max pooling’ convolution 128 (7 × 7),
’max pooling’ convolution 128 (4 × 4) filters and ’max pooling’ convolution 256
(4 × 4) filters, all with ’relu’ activation functions. The twin networks reduce
their inputs down to smaller and smaller 3D tensors. Finally, there is a fully
connected layer with 4096 units.

In most implementations of Siamese Networks, the training model is devel-
oped using a large amount of data. Also, particularly in the case of character
recognition, characters from one language are usually compared against the char-
acters from other languages [18, 3]. In contrast, in our experiments we only con-
sider alphabets from a single language. This is advantageous because it renders
the training process less data-demanding, as well as requires less expertise in
choosing suitable comparison languages.

6.2 Results and Discussions

(a) Character Recognition (b) Neurological Diagnosis

Fig. 6: Average Predictive accuracy of ILP (OSHD) vs Deep Learning (Siamese
Net)

Figure 6 (a) shows the average predictive accuracy of ILP (OSHD) vs Deep
Learning (Siamese Net) in One-shot character recognition with increasing num-
ber of negative examples (number of different classes). As shown in this figure,
Siamese Net and OSHD have almost same accuracy for class 2. In all other cases,
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OSHD outperforms Siamese Net with significant difference. Figure 6 (b) shows
the average predictive accuracy of ILP (OSHD) vs Deep Learning (Siamese Net)
in the neurodegenerative diseases with increasing numbers of negative examples.
As in the character recognition dataset, Siamese net and OSHD have a similar
accuracy for class 2. In all other cases, OSHD outperforms Siamese net with a
significant difference. We have also used a T-test to check the validity of the null
hypothesis. For the CR experiment, we obtained 2.813 as the t-value and 0.008
as the p-value, whereas we obtained 3.658 and 0.001 for the neurodegenerative
dataset experiment, respectively. The T-test as well as the predictive accuracy
reject the null hypotheses 1 and 2.

Due to the involved quantities and complexities, recording and displaying all
the learned rules is beyond the scope of this work. However, we have shown some
random learned rules generated during the experiments in table 3, which allows
to assess hypothesis 3. The rules from table 3 suggest that OSHD can lean rules
which are human comprehensible and can be easily communicated with domain
experts,so null hypothesis 3 is also rejected.

Table 3: Example of learned rules

Character Recognition Neurological Diagnosis

alphabet(A) :-

has gemproperties(A, B),

has gemproperties(A, C),

has gemproperties count(B, junctions, 4),

has gemproperties(A, D)

diagnosis(A,parkinson) :-

fd venular(A,medium),

cr arteriolar equivalent(A,medium),

tortuosity arteriole(A,low)

7 Conclusion

In this paper, we presented a novel approach for one-shot rule learning called
One-Shot Hypothesis Derivation (OSHD) [31] that is based on using a logic pro-
gram declarative bias. We applied this approach to two challenging computer
vision tasks: 1) Malayalam character recognition and 2) neurological diagnosis
from retinal images. The features used to express the background knowledge
for character recognition were developed in such a way that it is well-suited for
human visual cognition also. We demonstrated the learning of rules for each
character which is more natural and in accordance with human visual under-
standing. For neurological diagnosis, we collected and quantified several retinal
vascular features. We compared our results with a state-of-the-art Deep Learn-
ing approach, called Siamese Network, which has been developed for one-shot
learning.

The results suggest that our approach can generate human-understandable
rules and also outperforms the deep learning approach with a significantly higher
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average predictive accuracy.Its was clear from the results that deep learning
paradigm needs more data and its efficiency is decreased when dealing with
a small amount of data. As future work we would like to further extend the
background knowledge for the nueurological diagnosis problem to include more
semantic information and also explore the framework of Meta-Interpretive Learn-
ing (MIL) [24] for the purpose of one-shot learning from images [25].
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