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Abstract. This paper shows how a nonmonotonic ILP system XHAIL
can perform general-purpose learning and revision of temporal theories
in a full-fledged Discrete Event Calculus (DEC) framework with several
features (now introduced into ILP for the first time) for dynamically re-
leasing fluents from the commonsense law of inertia and subjecting them
to mathematically-defined gradual change trajectories. First, we review
key aspects in the development of the DEC and prior attempts aimed at
learning within simple fragments of it. Then, we introduce a new form-
ulation of DEC, called the eXploratory Event Calculus (XEC), which
(a) results in significantly reduced grounding size and execution times
with respect to state-of-the-art translations of DEC from circumscrip-
tive logic into Answer Set Programming (ASP), and which (b) provides
a unifying framework that supports different policies used (explicitly or
implicitly) in prior work to resolve conflicts between concurrent events
competing to determine the truth value and/or release status of fluents
under a circumscriptive or answer set semantics. Finally, we give the first
known demonstration of learning and revision of theories in the full DEC
by using XHAIL and XEC in a proof-of-principle example showing how
such theories can be revised under different conflict resolution policies.
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1 Introduction

This paper shows how a nonmonotonic ILP system XHAIL [29] can perform
general-purpose learning and revision of expressive temporal theories in a full-
fledged Discrete Event Calculus (DEC) framework [26] which has many core
features (now being introduced into ILP for the first time) for dynamically re-
leasing fluents from the commonsense law of inertia and subjecting them instead
to mathematically-defined gradual change trajectories.

The present work supersedes previous applications of ILP to variants of
the Simplified Event Calculus (SEC) [31] which include inertial fluents with
positive/negative effects, fluent/action preconditions and trigger axioms, but
which exclude static/dynamic fluents, concurrent/disjunctive events, cumulative/-
cancelling effects, causal/effect constraints and trajectories/antitrajectories – all
of which are essential for modelling realistic temporal domains [26].
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To enable the possibility of running XHAIL on a wide spectrum of bench-
marks encompassing both the nonmonotonic logic programming tradition and
the circumscriptive classical logic tradition of Event Calculus (EC) development,
the first main contribution of this paper is to introduce a novel formalisation of
the DEC, called the eXploratory Event Calculus (XEC), which offers at least
four major advantages over previous EC axiomatisations:

– it supports all the different policies used (explicitly or implicitly) in prior
work to resolve various conflicts between concurrent events competing to set
the truth value of fluents and/or their release from the law of inertia [19];

– it provides an efficient (native) non-monotonic logic programming encoding
of the DEC which may be optionally supplemented with additional axioms
to simulate a circumscriptive classical logic semantics, if the need arises;

– it uses a new new encoding of trajectories that scales much better in Answer
Set Programming (ASP) and Boolean Satisfiability (SAT) by eliminating
from prior work any axioms quantified over more than two time points;

– XEC significantly outperforms state-of-the-art translations of DEC from
2nd-order circumscriptive logic into ASP by F2LP [17] when tested on the
same benchmarks previously used to show the superiority of F2LP over the
prior state-of-the-art reduction of DEC into SAT by DEC-Reasoner [24].

To provide the first known demonstration of incremental learning and revision
of fully-featured DEC domain theories, the second main contribution is to exploit
the combination of XHAIL and XEC in a running example which shows how such
theories can be automatically revised to accommodate new observations or goals
using different conflict resolution and semantics. This work uses an open-source
ASP instance of XHAIL [6] but could be adapted (modulo nondeterminism) to
work with an Abductive Logic Programming (ALP) instance of XHAIL [29].

2 Background and Related Work

Since even a brief introduction to the full range of features supported by the
DEC would require more space than available here, the reader is referred to the
excellent chapter-by-chapter treatment in [26] which explains the features pro-
gressively added to the the Simple/Full/Extended-EC of [31], along with variants
in [19] which inspired the Original/Simplified/Basic/Continuous/Discrete-EC in
[25]. The aim of this paper is not to provide a technical introduction to these
features, but rather to demonstrate how ILP is ideally poised to play a leading
role in terms of their exploitation in practical reasoning tasks.

From a historical perspective, the EC evolved over four decades through four
main paradigms: logic programming [16] (80s); circumscriptive logic [19] (90s);
SAT [24] (00s); and ASP [17] (10s). The modern reliance on bottom-up SAT/ASP
systems has shifted focus from infinite continuous timelines to finite discrete
timelines which can be efficiently grounded and solved. This was enabled by the
axiomatisation of DEC [24] with provided equivalent discrete linear encodings
for 8 of 10 continuous EC axioms that were all originally quantified over (at
least) three time-points – leaving just two cubic axioms for (anti)trajectories.
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Although the DEC was originally used as the basis of a translation into
SAT by a tool known as the DEC-Reasoner [23], the same axiomatisation is
still used by current state-of-the-art reasoners that are now based on general
translation from 2nd-order circumscriptive logic into ASP using and approach
called F2LP [17]. The superiority of F2LP was demonstrated on a range of
benchmark problems [17, Fig.5] covering the full spectrum of features (including
durative events and compound actions which are not strictly included in the
DEC, but are realised in a well-known variant of the continuous EC [26, App.C]).

From its inception, the DEC has been formulated as a “a version of the event
calculus in which initiating and terminating an fluent at the same time causes
inconsistency” [24, Sec.2]. And, following its widespread adoption, most current
work has followed suit. But this contrasts with earlier work where “simultane-
ously initiating and terminating a fluent simply gives rise to two sets of models
(one in which the fluent is true immediately afterwards and one in which it is
false), rather than resulting in an inconsistent theory” [19, Sec.2.4].

The fact that all benchmarks to date have been carefully hand-crafted to
avoid any problematic conflicts on their intended EC variant has led to a total
lack of research into the following topics – which all become important when
domain theories can be machine learnt: there is no study of other conflicts types
(such as when concurrent events compete to bind and free a dynamic fluent to
and from the inertial frame); there is no study of other policy options (such as
holding or flipping the status quo or preferring one outcome over another); and
there is no study of which policies might be preferable in specific applications.

There is also a notable lack of research on inductive inference in the EC
literature, which is focused almost exclusively on deduction and abduction over
hand-crafted domain theories [26]. ILP is one of very few fields with a history
of temporal induction, with roots going back more than 15 years to the learn-
ing of domain theories in various action languages [15,18,9,27] including several
variants of the SEC on which the systems Clint [30], Progol [22], Alecto [21] and
(an ALP instance of) XHAIL [28] were used in theory completion tasks.

The deployment of the first ASP instance of XHAIL [29] paved the way for
two more realistic software engineering applications of SEC [3,7] which developed
into two successful lines of work in temporal learning [1,2] and revision [8,5]
based on two techniques first proposed in [29]1: one (p.334) for reducing theory
induction to abduction using meta-predicates try and use and one (p.338) for
reducing theory revision to abduction using meta-predicates try, del and ab.

XHAIL has been credited with inspiring development of many subsequent
systems specifically optimised for various aspects of practical EC reasoning: e.g
ILED [13], OLED [11], INSPIRE [14], and I2XHAIL [20], Several enhancements
have also been made to these systems [12,10] and the underlying EC formalism.
[4,32]. Recently [33] used belief revision on a doxastic extension of the SEC. But,
no work has yet been done on induction over theories with dynamic fluents or
gradual change (or almost any other non-trivial DEC feature); and no work has
yet been done on comparing different conflict policies or semantics.

1 Note the published manuscript [29] was submitted in 2007 but only printed 2009.
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3 The eXploratory Event Calculus (XEC)

It is unsurprising EC conflict policies have been given little attention when all
DEC benchmarks have been carefully hand-crafted to avoid any possibility of
simultaneously stop/start-ing a fluent or bind/free-ing it to/from the inertial
frame. But, prior work has shown conflicts can be useful (e.g. to implement
nondeterminism) and it is not unreasonable to imagine that certain policies may
naturally apply to certain fluents under certain conditions in certain domains.
Clearly, if such choices are left implicit and arbitrary (as they often are), then
domain theories may not work across DEC instances or reasoners; and machine-
learnt extensions or revisions may not respect prior assumptions.

To tackle these issues, XEC offers a set of conflict resolution policies which
can be explicitly enabled and customised; and it also offers a set of optional
clauses which can be asserted, if need be, to effect a simulation of classical
semantics within its native logic programming semantics. This is achieved by
the ASP encoding of the full DEC in Fig. 1, which has four parts parts: (i)
axioms for intertial fluents and their optional Stop-Start policies; (ii) axioms
for dynamic fluents and their optional Bind-Free policies; (iii) the new axioms
for trajectories that scale quadratically with time; and (iv) optional clauses
which can be used to simulate a classical semantics.

XEC recognises several types of fluent: inertial and noninertial denote frame
(aka. primitive) fluents F and non-frame (aka. derived) fluents N, respectively, and
their extents should be disjoint; dynamic fluents D identify inertial fluents that
may be dynamically released from the frame; monitored fluents M are inertial
fluents that may be used to sustain (anti)trajectories; and controlled fluents C

are dynamic or noninertial fluents that may be controlled by (anti-)trajectories.
Intuitively, noninertial fluents are not subject to the commonsense law of inertia
and their truth will be determined by state constraints and trajectories; while
inertial fluents are subject to inertia unless they are dynamic and released

The core axioms of XEC are superficially similar to existing translations of
DEC into ASP such as those obtained from F2LP or given in Fig.15 of [26], but
there are three key differences: First, XEC is written in a logic programming
style which only requires to formalise when holdsAt and releasedAt are true.
This means we can avoid several choice literals and integrity constraints shown
at the end of the listing if it is not required to strictly enforce inertial integrity
and/or compute unsupported classical models. While these can be added back
to obtain a classical variant of XEC, if need be, they are arguably inefficient,
unnecessary and undesirable from a logic programming point of view

Second, XEC is written so that the core axioms only fire in the absence of
conflicts. This results in a conservative default policy of stopping/binding a flu-
ent when a conflict occurs. In turn, this allows the possibility of overriding those
policies by uncommenting the starred conflict detection clause corresponding to
the default option and uncommenting a conflict resolution clause correspond-
ing to one of five given substitutes: apply the converse of the default policy
(Start/Free); make a non-deterministic choice (Pick); maintain the status quo
(Hold); change the status quo (Flip); or declare a logical inconsistency (Fail).
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1 % %%%%%%%%%%%% i. INERTIAL (& NONINERTIAL ) FLUENTS %%%%%%%%%%%%%%%
2

3 #domain inertial(F). #domain noninertial(N). #domain event(E).
4 #domain time(T;T1;T2). #domain succ(R,S). succ(T1,T2):-T2=T1+1.
5

6 % STOP-START CONFLICT (SSC) RESOLUTION POLICY OPTIONS %
7 % ( uncomment default* and another option to override): %
8 %-------------------------------------------------------------%
9 % ssc(F,T) :- stops(F,T), starts(F,T). % STOP*

10 % holdsAt(F,S) :- ssc(F,R), not releasedAt (F,S). % START
11 % {holdsAt(F,S)} :- ssc(F,R), not releasedAt (F,S). % PICK
12 % holdsAt(F,S) :- ssc(F,R), holdsAt(F,R), not releasedAt (F,S). % HOLD
13 % holdsAt(F,S):-ssc(F,R),not holdsAt(F,R),not releasedAt (F,S). % FLIP
14 % :- ssc(F,T). % FAIL
15

16 holdsAt(F,S) :- starts(F,R), not stops(F,R), not releasedAt(F,S).
17 holdsAt(F,S) :- holdsAt(F,R), not stops(F,R), not releasedAt(F,S).
18 starts(F,T) :- happens(E,T), initiates(E,F,T).
19 stops(F,T) :- happens(E,T), terminates(E,F,T).
20

21 % %%%%%%%%%%%%%%%%%%%% ii.DYNAMIC FLUENTS %%%%%%%%%%%%%%%%%%%%%%%%
22

23 #domain dynamic(D).
24

25 % BIND-FREE CONFLICT (BFC) RESOLUTION POLICY OPTIONS %
26 % ( uncomment default* and another option to override): %
27 %-------------------------------------------------------------%
28 % bfc(D,T) :- binds(D,T), frees(D,T). % BIND*
29 % releasedAt (D,S) :- bfc(D,R). % FREE
30 % {releasedAt (D,S)} :- bfc(D,R). % PICK
31 % releasedAt (D,S) :- bfc(D,R), releasedAt (D,R). % HOLD
32 % releasedAt (D,S) :- bfc(D,R), not releasedAt (D,R), % FLIP
33 % :- bfc(D,T). % FAIL
34

35 releasedAt(D,S) :- frees(D,R), not binds(D,R).
36 releasedAt(D,S) :- releasedAt(D,R), not binds(D,R).
37 frees(D,T) :- happens(E,T), releases(E,D,T).
38 binds(D,T) :- starts(D,T).
39 binds(D,T) :- stops(D,T).
40

41 % %%%%%%%%%% iii. TRAJECTORY (& ANTITRAJECTORY ) AXIOMS %%%%%%%%%%
42

43 #domain monitored(M). #domain controlled(C).
44

45 holdsAt(C,T1+T2) :- followT(M,T1,T2), trajectory(M,T1-1,C,T2+1).
46 followT(M,S,0) :- starts(M,R), holdsAt(M,S), not releasedAt(M,S).
47 followT(M,T,S) :- followT(M,T,R), not stops(M,T+R), time(T+S).
48

49 holdsAt(C,T1+T2) :- followA(M,T1,T2), antiTrajectory(M,T1-1,C,T2+1).
50 followA(M,S,0) :- stops(M,R), not holdsAt(M,S), not releasedAt(M,S).
51 followA(M,T,S) :- followA(M,T,R), not starts(M,T+R), time(T+S).
52

53 % %%%%%%%%%%%%%%%%%% iv. CLASSICAL SEMANTICS %%%%%%%%%%%%%%%%%%%%%
54

55

56 % {holdsAt(F,T)}. {holdsAt(N,T)}.
57 % :-holdsAt(F,S), not holdsAt(F,R), {starts(F,R), releasedAt (F,S)}0.
58 % :-not holdsAt(F,S), holdsAt(F,R), {stops(F,R), releasedAt (F,S)}0.
59 % :-holdsAt(F,S), holdsAt(F,R), stops(F,R), {starts(F,R), releasedAt (F,S)}0.
60 % :-not holdsAt(F,S), not holdsAt(F,R), starts(F,R), {stops(F,R), releasedAt (F,S)}0.
61

62 % {releasedAt (D,T)}.
63 % :-releasedAt (F,S), not releasedAt (F,R), {frees(F,R)}0.
64 % :-not releasedAt (F,S), releasedAt (F,R), {binds(F,R)}0.
65 % :-releasedAt (F,S), releasedAt (F,R), binds(F,R), {frees(F,R)}0.
66 % :-not releasedAt (F,S), not releasedAt (F,R), frees(F,R), {binds(F,R)}0.
67 � �

Listing 1. eXploratory Event Calculus (XEC) with optional policies.
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Note that, if more than one option is chosen, then the label positions depict a
partial order in which any lower option will take priority over any other options
vertically above them; and where the combination of Hold and Flip is equivalent
to FAIL. Note also that it is possible to customise any of these policies and/or
add new ones which might be appropriate in a specific modelling task. Note
additionally that the conflict detection rules for ssc and bsc can be treated
as definitional abbreviations which can be trivially unfolded from the program.
They are included here only for intellectual clarity and to make the optional
policy definitions slightly more compact.

Third, XEC introduces a new encoding of trajectories whose rules (in con-
trast to prior work) are quantified over at most two timepoints2. This is done
by introducing the predicates followT and followA to recast (anti)trajectory
definitions into a successor state form in the same way holdsAt and releasedAt

were first recast in the DEC by eliminating clipped and declipped from the
continuous EC. Intuitively followT(f,t,k) means that, at time t+k, we are k

time steps into a trajectory we have been following since the fluent f was turned
on at time t. Thus (anti)trajectory axioms in XEC are quadratic in time, as
opposed to cubic, and all other (non-optional) axioms remain linear.

Note this code emulates the canonical DEC behaviour by only allowing tra-
jectories to be cancelled by an explicit terminating event on the monitored fluent.
Note also, since the Start-Stop and Bind-Free conflict policies may both override
the effect an initiates event may have in the next state, the trajectory axioms
include checks to ensure the monitored fluent did actually hold at the timepoint
after the initiating event (so the initiation was not overruled by a competing
termination) and the monitored fluent is not released either (so the initiation
was not overruled by a competing release - which would then have meant state
constraints must have activated the fluent instead of the initiating event)!

Since durative events can also be efficiently encoded in a similar way to what
has just been described for trajectories, a generalised XEC was developed to
support the happens/3 predicate needed to run the F2LP Commuter benchmark,
which includes a compound action. The result is a discrete projection of existing
axiomatisations of durative events in the (continuous) EC [26, App.C] but the
details are beyond the scope of this paper.

To validate the correctness of XEC and evaluate its efficiency when run on
XHAIL, it was tested against the state-of-the-art translation of DEC into ASP
by F2LP [17]. Tests were run on nine benchmarks previously used to show the
superiority of F2LP over the prior state-of-the-art DEC-Reasoner [24]. All bench-
marks were tested on the same timeline 0..50. The durative variant of XEC was
used in one task; a causal extension was added to both XEC and DEC in one
task; and the classical extension was added to XEC in three tasks. The results
in Table 1 show that XEC leads to much reduced grounding size and run time.

2 Although the last rules for followT and followA do syntactically mention three
timepoints R, S and T, domain declarations mean that S is merely an abbreviation
for R+1, and so the rule is only actually quantified over two times: R and T.



Revising dynamic theories in the full Discrete Event Calculus 7

Task [maxstep=50] F2LP(DEC) XHAIL(XEC)

Bus Ride
(disjunctive event)

144 ms
(gnd:86±11; slv:58±4)

47 kb
(rul:2,618; atm:157)

112 ms
(gnd:56±4; slv:56±2)

12 kb
(rul:603; atm:123)

Commuter a

(compound event)

1,736 ms
(gnd:946±4; slv:790±7)

8,590 kb
(rul:436,497; atm:7,237)

140 ms
(gnd:74±4; slv:66±2)

28 kb
(rul:1,470; atm:203)

Kitchen Sink
(trajectory+trigger)

1,694 ms
(gnd:940±16; slv:754±11)

8,713 kb
(rul:404,507; atm:970)

242 ms
(gnd:136±9; slv:106±4)

383 kb
(rul:19,664; atm:728)

Thielscher Circuit b

(causal constraint)

374 ms
(gnd:210±9; slv:164±7)

1,084 kb
(rul:66,901; atm:409)

140 ms
(gnd:78±13; slv:62±7)

58 kb
(rul:2,688; atm:394)

Walking Turkey
(effect constraint)

148 ms
(gnd:82±7; slv:66±7)

29 kb
(rul:1,576; atm:154)

140 ms
(gnd:70±9; slv:70±7)

11 kb
(rul:424; atm:155)

Falling w/AntiTraj c

(traj.+antitraj.)

346 ms
(gnd:218±7; slv:128±2)

799 kb
(rul:43,919; atm:664)

258 ms
(gnd:152±2; slv:106±2)

491 kb
(rul:26,165; atm:664)

Falling w/Events c

(traj.+rebind.)

1,898 ms
(gnd:1,056±13; slv:812±7)

9,907 kb
(rul:454,657; atm:1,072)

332 ms
(gnd:190±7; slv:142±2)

884 kb
(rul:44,726; atm:1,072)

Hot Air Balloon c

(traj.+antitraj.)

158 ms
(gnd:90±0; slv:68±2)

104 kb
(rul:5,790; atm:410)

160 ms
(gnd:86±2; slv:74±7)

115 kb
(rul:6,602; atm:410)

Telephone1
(direct effects)

264 ms
(gnd:158±2; slv:106±2)

350 kb
(rul:17,950; atm:819)

158 ms
(gnd:88±4; slv:70±0)

68 kb
(rul:3,309; atm:275)

a
{

F2LP run on variant of (continuous) EC with durative events [26, Apndx.C];
XHAIL run on novel extension of (discrete) XEC with durative events.

b
{

F2LP/XHAIL both run on identical causal extension of DEC/XEC.

c
{

XHAIL run on classical extension of XEC.

Table 1. Comparison of execution time and grounding size of XHAIL with XEC
(right) and F2LP with DEC (centre) on 9 standard benchmarks from [17, Fig.5] (left).
Grounding size (number of rules; number of atoms) computed by Gringo 3.0.5 with
timeline 0..50 in all tasks. Execution time (grounding time; solving time of first model)
computed by Clasp 3.1.0 (averaged over 5 trials) on a Windows 10 i64 command shell
running on a Dell Lattitude 5480 with Intel Core i7 2.6 GHz CPU and 16 Gb RAM.
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4 XEC Theory Learning and Revision with XHAIL

XHAIL [29,6] is a nonmonotonic ILP system which operates under the credulous
answer set semantics. It allows answer set programs to be annotated with exam-
ples (which are positive/negative ground literals representing goals or properties
that a user desires to be true/false in some model of the program) and mode
declarations (which specify syntactic constraints on the heads/bodies of clauses
that may be potentially added to program in order to achieve those goals). Inte-
ger weights and priorities may be optionally attached to examples and/or mode
declarations in order to modulate the built-in compression heuristic and seman-
tic bias that seeks to pragmatically identify extensions of a given program having
models with the required properties.

The following seemingly simple running example shows how XHAIL can ac-
complish theory learning and revision in the full-featured XEC under different
conflict resolution policies. We start with an input file consisting of the code
in Listing 1 – which implements the default Stop/Bind resolution policies. For
convenience, we assume the conflict detection clauses for Stop-Start conflicts ssc
and for Binf-Free conflicts bfc are initially included with the core axioms. On
top of these core axioms, fragments of code (red labels) will be cumulatively
added to the input file and and summaries of XHAIL’s output will be given at
key points (blue labels).

The first fragment of code (01) brings into play eleven timepoints 0,1,..,10,
a frame fluent (f) that is known to hold in the initial state, and an event e that
is known to happen on all eleven of the timepoints defined so far. The #example

directive (which can also be called a goal) tells XHAIL to try and find or constuct
models where f holds at time 2. The #display directive tells XHAIL to print
out true instance of hold/2 (when called with the -f option for displaying full
output). Given this input file XHAIL will compute the one and only model of
this program.

01:

%%% Start with default policies: SSC=Stop; BFC=Bind

time(0..10). inertial(f). holdsAt(f,0). event(e). happens(e,0..10).

#example holdsAt(f,2). #display holds/2.

>>> model: holdsAt(f,0) holdsAt(f,1) holdsAt(f,2)...holdsAt(f,9) holdsAt(f,10)

If another goal is added stating that f should be false at time 1, then XHAIL
will have to infer a hypothesis in order to make both existing goals true (as the
only model currently has f true always). The head declarations allow XHAIL to
infer atoms of the form initiates(e,f,T) and terminates(e,f,T) where e is
a specific event, f is a specific fluent, and T is a variable representing a timepoint.

02:
#example not holdsAt(f,1).

#modeh initiates($event, $inertial, +time).

#modeh terminates($event, $inertial, +time).

If the variable placemarker denoted “+” had been replaced by the constant
placemarker denoted “$”, then XHAIL would have returned a ground abductive
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hypothesis consisting of the two facts terminates(e,f,0) and initiates(e,f,1).
But as a variable must appear in the third argument, there is no solution to this
problem under a Stop SSC. This is because event e would end up simultaneously
initiating and terminating f on every time point. And since the termination
would always take priority, there would be no way for f to become true again
at 2 once it was false at 1.

>>> no meaningful answers, ...

But if we now switch to a nondeterministic SSC policy by asserting the choice
rule associated with the Pick option, then XHAIL is able to return a hypothesis.
This is because the competition between the initiating and terminating effect
of e on f will allow a nondeterministic choice on every time point, so the goals
can now be correctly satisfied according to the following (seemingly overgeneral)
hypothesis:

03:
%%% Switch to secondary SSC policy: SSC=Pick; BFC=Bind

{holdsAt(F,S)} :- ssc(F,R), not releasedAt(F,S).

>>> hypothesis: initiates(e,f,V1). terminates(e,f,V1).

On the other hand, if we override the SSC policy yet again, using the Fail
option, then previous hypothesis is no longer a correct solution.

04:
%%% Switch to tertiary SSC policy: SSC=Fail; BFC=Bind

:- ssc(F,T).

>>> no meaningful answers, ...

But if some body declarations are added, then XHAIL can qualify the pre-
vious hypothesis by restricting the conditions under which initiation and termi-
nation may occur so that an SSC may be avoided.

05: #modeb holdsAt($inertial,+time). #modeb not holdsAt($inertial,+time).

>>>

hypothesis:

terminates(e,f,V1) :- holdsAt(f,V1), time(V1).

initiates(e,f,V1) :- not holdsAt(f,V1), time(V1).

The above hypothesis dictates that f will constantly alternate being on for
one even timepoints and then off for odd ones. But if we are given an extra
observation that f does not actually hold at 4 (although it does at 6), then it
is not possible to correctly specify terminates solely on the basis of whether f
holds or not.

06: #example not holdsAt(f,4). #example holdsAt(f,6).

>>> no meaningful answers, ...
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But suppose we supply some additional background knowledge stating when
one integer is a multiple of another.

07:
int(0..9). multiple(T1,T2) :- T2>1, T1 #mod T2==0.

#modeb multiple(+time, $int).

Now XHAIL will once again find a solution.

>>>

hypothesis:

terminates(e,f,V1):-multiple(V1,3),time(V1).

initiates(e,f,V1):-not holdsAt(f,V1),time(V1).

The above hypothesis has e potentially initiating f whenever it becomes false;
and it has e potentially terminating f on any time point that is a multiple of
3. This means f will false for one time before going true for two timepoints and
then repeating this cycle.

But if we make f into a dynamic fluent and a another event f that releases
f at time at 5, then XHAIL will have to infer an additional clause under the
curent default BFC policy Stop. This is because, if left uncontested, the release
at 5 would push f to be false at 6, which would violate a goal (in code fragment
06). But XHAIL can avoid this by effectively generating a conflict at 5 whereby
the the initiation of d will take priority and keep f high at 6:

08: dynamic(f). event(d). releases(d,f,T). happens(d,5).

>>>

hypothesis:

terminates(e,f,V1):-multiple(V1,3),time(V1).

initiates(e,f,V1):-not holdsAt(f,V1),time(V1).

initiates(d,f,V1).

But if we now change to the opposite BFC policy Free, which favours releasing
fluents, then this escape will no longer be possible:

09:
%%% Switch to secondary BFC policy: SSC=Fail; BFC=Free

releasedAt(D,S) :- bfc(D,R).

>>> no meaningful answers, ...

But, now it is released, we can allow XHAIL to infer a state law to justify
the activation of f at 6. But, since we don’t want to trivialise the whole learning
task by letting XHAIL directly abduce each example, we attach a cost of 10 (or
any other high number) on this mode declaration in order to make its use ten
times less preferable than other head and body declarations - which all inherit
a default cost of 1.

10: #modeh holdsAt($dynamic,$time)=10.
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>>>

hypothesis:

terminates(e,f,V1):-multiple(V1,3),time(V1).

initiates(e,f,V1):-not holdsAt(f,V1),time(V1).

holdsAt(f,6).

At this point we may decide to accept the clauses learnt so far into the
knowledge base. But as we are not yet sure if they are trustworthy, we can use the
following method to add the clauses in a way that allows them to be subsequently
revised. As explained in [29, p.338]: (i) we wrap each (revisable) body literal b
in the clause in an atom of the form try(n,m, b) - where each (revisable) clause
is assigned a unique identifier m and each literal within that clause is assigned
a unique identifier n; and (ii) we add a literal not exception(m,h) - where h is
the atom in the head of the clause. Then two rules for each try atom are added:
one representing the possibility of deleting the literal form the clause, and one
representing the possibility of keeping it. The language bias is then set to allow
literals to be deleted or exceptions to be inserted.

11:

holdsAt(f,6) :- not exception(0,holdsAt(f,6)).

terminates(e,f,T) :-

try(1,1,multiple(T,3)), not exception(1,terminates(e,f,T)).

try(1,1,multiple(T,3)) :- del(1,1).

try(1,1,multiple(T,3)) :- not del(1,1), multiple(T,3).

initiates(e,f,T) :-

try(1,2,not holdsAt(f,T)), not exception(2,initiates(e,f,T)).

try(1,2,not holdsAt(f,T)) :- del(1,2).

try(1,2,not holdsAt(f,T)) :- not del(1,2), not holdsAt(f,T).

literal(1..1). clause(0..2).

#modeh del($literal,$clause).
#modeh exception($clause,holdsAt(f,six)). six(6).

#modeh exception($clause,terminates(e,f,+time)).
#modeh exception($clause,initiates(e,f,+time)).

Now, any hypotheses containing rules for del or exception are treated as
instructions for revising these clauses through a post-processing step. So, adding
the following information which states d happens at 8 but f is false at 9 will
introduce an inconsistency that can only be removed by tightening the definition
of terminates. This is because, according to the original rules, once d causes f
to be released at 9, then the simultaneous happening of e will both initiate f
(because f is false at 9) and terminate f (because 9 is a multiple of 3) - which
is not allowed under the current Fail-Free conflict policies.

11: happens(d,8). :- holdsAt(f,9).

So the following hypothesis is returned (among some others), which is viewed
as an instruction to modify revisable clause 1 for the termination of f by adding
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the complements of the literals in the body of the exception clause into the body
of original clause.

>>> hypothesis: exception(1,terminates(e,f,V1)):-not holdsAt(f,V1).

After a renaming variables to reflect their types, we are left with the following
revised version of the previously learnt clauses, which we now decide to assert
as given into our final knowledge base:

12:
terminates(e,f,T) :- multiple(T,3), holdsAt(f,T).

initiates(e,f,T) :- not holdsAt(f,T).

holdsAt(f,6).

The next and final part of the example demonstrates how trajectories can be
learnt. The mechanism proposed below works by fitting a polynomial of some
chosen degree to a set of observations in order to define a domain specific tra-
jectory. To keep things simple we will stick to a linear regression using a poly-
nomial of degree 1. First the timeline is extended by 5 more points 11..15 and
new types are introduced to represent equation coefficients and values. Atoms
linear(x0,x1,t,v) facilitates linear regression by precomputing mappings from a
timepoint t to a value v using coefficients x0 and x1 to define a linear equation
v=x1.t+x0. We define beginning and elapsed as synonyms for time and specify
the monitored fluent f and the controlled fluents g(V ). There is also an integrity
constraint stating that g can only have at most one value at any given time. The
mode declarations allow us to learn the definition of a trajectory in terms of a
linear equation.

13:

#domain time(T). time(11..15).

#domain coeff(X0;X1;X2). coeff(0..2).

#domain value(V;V1;V2). value(0..15).

linear(X0,X1,T,V) :- V==X1*T+X0.

beginning(T). elapsed(T).

noninertial(g(V)). controlled(g(V)). monitored(f).

:- holdsAt(g(V1),T), holdsAt(g(V2),T), V1!=V2.

#example holdsAt(g(5),11).

#example holdsAt(g(11),14).

#modeh trajectory(f, +beginning, g(+value), +elapsed).

#modeb linear($coeff, $coeff, +time, +value).

When run on this task, XHAIL produces the following hypothesis:

>>>

hypothesis:

trajectory(f,V1,g(V2),V3) :-

multiple(V1,3),linear(1,2,V3,V2),

beginning(V1),elapsed(V3),value(V2).

This can be more clearly written as simply
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trajectory(f,T1,g(2*T1+1)) :- multiple(T1,3)

In theory, this method can be generalised to arbitrary polynomials for exam-
ple using the following rule to implement quadratic regression.

quadratic(X0,X1,X2,T,V) :- V==X2*T*T+X1*T+X0.

But, in practice, this method does not scale very in ASP. In contrast to the
previous learning tasks which were all solved in an instant, this task (which
remember is still conjoined with the 12 previous code snippets) took about 20
seconds to solve. Given the general-purpose nature of the revisions being per-
formed by XHAIL it should be clear this example can easily be extended to
learn antitrajectories, triggers, causal constants, or any other standard (or even
non-standard) types of DEC axiom.

5 Conclusion

This paper introduced the eXploratory Event Calculus (XEC) as a pragmatic
framework for reasoning with the Discrete Event Calculus (DEC) under an ex-
tended set of conflict policies and semantic choices. This has begun to allow
the systematic comparison of existing works in terms of the explicit or implicit
choices they have made; and it has begun to allow the investigation of how these
choices impact upon theory learning and revision.

In contrast to the prevailing trend of translating DEC theories from 2nd
order circumscriptive classic logic into ASP, the work presented here suggests
that the use of compact native ASP programs may have significant conceptual
and practical advantages.

This paper also presented the first axiomatisation of trajectories that does not
rely upon any rules quantified over more than two timepoints; and this technique
is likely to realise significant efficiency benefits for reasoning with trajectories
using ASP systems on fully materialised timelines.

And the paper showed how XHAIL can be applied to the tasks of theory
completion and theory revision in a fully featured XEC under different reasoning
policies.

This work provides the first known demonstration of learning and revision of
temporal theories with dynamic fluents and trajectories.
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