
Feature Learning by Least Generalization

Hien D. Nguyen1,2 and Chiaki Sakama3

1 University of Information Technology, Ho Chi Minh city, Vietnam
2 Vietnam National University, Ho Chi Minh city, Vietnam

hiennd@uit.edu.vn
3 Wakayama University, Wakayama, Japan

sakama@wakayama-u.ac.jp

Abstract. This paper provides an empirical study for feature learning based on
induction. We encode image data into first-order expressions and compute their
least generalization. An interesting question is whether the least generalization
can extract a common pattern of input data. We also introduce two different meth-
ods for feature extraction based on symbolic manipulation. We perform experi-
ments using the MNIST datasets and show that the proposed methods success-
fully capture features from training data and classify test data in around 90%
accuracies. The results of this paper show potentials of induction and symbolic
reasoning to feature learning or pattern recognition from raw data.

Keywords: Feature learning · Least generalization · Interpretable machine learn-
ing.

1 Introduction

Feature learning or representation learning is the technique to discover the necessary
representations for feature detection or classification from data [3]. In machine learning,
neural networks (NN) and deep learning [9] are widely used for this purpose. Deep
learning has powerful capability in feature learning, while it does neither show what
is learned nor explain why an output is obtained. This raises the need of interpretable
machine learning [12] or explainable AI (XAI) [1] that aims to make AI systems results
more understandable to humans.

Inductive logic programming (ILP) [6, 11] realizes machine learning based on sym-
bolic reasoning. In contrast to the NN approaches, ILP can learn human-readable hy-
potheses from small amounts of data, which enables to accumulate learned results as
knowledge and to share them by humans. One of the challenging issues of ILP is learn-
ing from raw data. In [5], the authors say:

Most ILP systems require data in perfect symbolic form. However, much real-
world data, such as images and speech, cannot easily be translated into a sym-
bolic form. Perhaps the biggest challenge in ILP is to learn how to both perceive
sensory input and learn a symbolic logic program to explain the input.

The goal of this study is to realize feature learning from raw data using ILP tech-
niques. To this end, we first encode image data into first-order atoms by representing

2 Hien D. Nguyen and Chiaki Sakama

pixel information in terms. Next we compute least generalization of those atoms. Least
generalization [14, 15] is a technique of inductive generalization and extracts a common
pattern among expressions. Then, an interesting question is whether least generalization
can extract a common pattern of input data as features. We also introduce two different
methods for feature extraction based on symbolic manipulation. We implement the pro-
posed methods and test on the MNIST datasets. Experimental results show that some
of the methods successfully extract features of handwritten digits and fashion figures in
a human-readable manner. The extracted features are used for classification and their
accuracy, precision and recall are evaluated.

The rest of this paper is organized as follows. Section 2 describes the proposed
method, and Section 3 presents experimental results. Section 4 discusses related issues,
and Section 5 summarizes the paper.

2 Feature Learning by Least Generalization

2.1 Least generalization

A first-order language consists of an alphabet and all formulas defined over it. The
definition is the standard one in the literature [4, 6]. A term is either (i) a constant, (ii) a
variable, or (iii) f (t1, . . . , tm) where f is an m-ary (m ≥ 1) function symbol and t1, . . . , tm
are terms. An atom is a formula P(t1, . . . , tn) (n ≥ 1) where P is an n-ary predicate and
ti’s are terms. An expression is either a term or an atom. Two atoms are compatible if
they have the same n-ary predicate. The set of all variables (resp. terms, atoms) in the
language is denoted by Var (resp. Term, Atom). The set of all expressions is defined as
Exp = Term∪Atom. A substitution is a mapping σ from Var into Term such that the
set Γ = {⟨x,σ(x)⟩ | x ̸= σ(x) and x ∈Var} is finite. When σ(xi) = ti for i = 1, . . . ,n, it
is also written as σ = { t1/x1, ..., tn/xn }. The set of all substitutions in the language is
denoted by Sub. The identity mapping ε over Var is the empty substitution.

Let σ ∈ Sub and E ∈ Exp. Then Eσ is defined as follows:

Eσ =


σ(x) if E = x for x ∈Var,
a if E = a for a constant a,
f (t1σ , ..., tmσ) if E = f (t1, ..., tm) ∈ Term,
P(t1σ , ..., tnσ) if E = P(t1, ..., tn) ∈ Atom.

A preorder relation ≤ over Atom is defined as follows. For any A,B ∈ Atom, A ≤ B
if A = Bθ for some θ ∈ Sub. Then, B is a generalization of A if A ≤ B.

Definition 1 (least generalization). ([14, 15]) Let A1, A2 ∈ Atom. An atom A ∈ Atom
is a common generalization of A1 and A2 if Ai ≤ A for i = 1,2. In particular, A is a least
common generalization of A1 and A2 if A is a common generalization of A1 and A2, and
A ≤ A′ for any common generalization A′ of A1 and A2. Least common generalization
is simply called least generalization. The least generalization of A1 and A2 is written as
lg({A1,A2}).

An algorithm for computing least generalization is introduced by [14, 15]. Here we
refer the one from [6] (Figure 1).4

4 It is also called anti-unification.

Feature Learning by Least Generalization 3

Input : Two compatible atoms A1 and A2
Output : G = lg({A1,A2})

1. Set A′
1 = A1 and A′

2 = A2, θ1 = θ2 = ε , and i = 0.
Let z1,z2, . . . be a sequence of variables not appearing in A1 or A2.

2. If A′
1 = A′

2, then output G := A′
1 and stop.

3. Let p be the leftmost symbol position where A′
1 and A′

2 differ. Let s and t be the terms
occurring at this position in A′

1 and A′
2, respectively.

4. If, for some j with 1 ≤ j ≤ i, z jθ1 = s and z jθ2 = t, then replace s at the position p in A′
1 by

z j, replace t at the position p in A′
2 by z j, and go to 2.

5. Otherwise set i to i+1, replace s at the position p in A′
1 by zi, and replace t at the position p

in A′
2 by zi. Set θ1 to θ1 ∪{s/zi}, θ2 to θ2 ∪{t/zi}, and go to 2.

Fig. 1. Algorithm for Least Generalization [6]

2.2 Encoding image data into first-order expressions

We encode image data into first-order expressions and compute their least generaliza-
tion. We first describe a method of encoding image data into terms. An image (in black,
white or grayscale) is presented by 28×28 = 784 pixels where each pixel is an integer
value from 0 to 255.5 An image is then represented as a vector vvv ∈ R784 that contains
pixel values as elements. Each pixel x (0 ≤ x ≤ 255) is transformed to the term f k(z)
with a variable z where

k =
⌊ x

64

⌋
+1,

f 1(z) = f (z) and f k+1(z) = f (f k(z)) (1 ≤ k ≤ 3).

where ⌊ ⌋ is the floor function of a real argument x which returns the greatest integer less
than or equal to x. The function symbol f is used to represent “closeness” of pixels. For
instance, when 0 ≤ x1, x2 ≤ 63, both x1 and x2 are represented as f (z). When x1 = 80
and x2 = 200, for instance, x1 is represented as f 2(z) and x2 is represented as f 4(z).
This representation helps to keep information of the range of shades in computing least
generalization.

With this encoding, a vector vvv is encoded into an atom having 784 arities:

P(t1.1, . . . , t1.28, t2.1, . . . , t2.28, . . . , t28.1, . . . , t28.28).

In this paper, the existence of a predicate is unimportant, so hereafter we identify the
above atom with the tuple (t1.1, . . . , t1.28, t2.1, . . . , t2.28, . . . , t28.1, . . . , t28.28).

5 0 means black and 255 means white. In between, every other number is a shade of gray ranging
from black to white.

4 Hien D. Nguyen and Chiaki Sakama

Fig. 2. An example of a 28×28 image.

Example 1. The image of Figure 2 is encoded into a tuple of terms as follows:

(f (z), . . . , f (z),︸ ︷︷ ︸
28×6values

%1st to 6th rows

f (z), . . . , f (z)︸ ︷︷ ︸
16values

, f 3(z), f 4(z), f 4(z), f 3(z), f (z), . . . , f (z),︸ ︷︷ ︸
8values

%7th row

f (z), . . . , f (z)︸ ︷︷ ︸
14values

, f 2(z), f 4(z), f 4(z), f 2(z), f 2(z), f 4(z), f (z), . . . , f (z),︸ ︷︷ ︸
8values

%8th row

. . . , f (z), . . . , f (z)︸ ︷︷ ︸
28values

) %28th row

2.3 Extracting features

Training data is classified by their labels. Suppose a set of training data Cl = {A1, . . . ,An}
(called a class) where l is a label and Ai (1 ≤ i ≤ n) is a first-order atom (or a tuple)
representing an image. The least generalization of Cl is then computed as follows.

Algorithm 2: Least generalization of training data

Input : a set of training data Cl = {A1, . . . ,An } where Ai (1 ≤ i ≤ n) is a first-order
atom (tuple) representing an image and l is a label.

Output : least generalization of Cl (written lg(Cl)).

1. Put A0 := A1.
2. For i from 2 to n do:

Compute A0 := lg({A0,Ai}) by the algorithm of least generalization (Fig. 1).
3. Return A0.

The output of Algorithm 2 is decoded into pixel data by the converse transformation
of the encoding presented in Section 2.2: a term f k(z) (1≤ k ≤ 4) in a tuple is converted
into the pixel with the value (k− 1)× 64. The obtained vector uuu ∈ R784 is viewed as
features extracted by least generalization. We refer this way of extracting features by
GEN and call uuu a feature vector by GEN.

Feature Learning by Least Generalization 5

Next we introduce two different methods for feature extraction. Suppose a set of
training data Dl = {vvv1, . . . ,vvvn} where l is a label and vvvk ∈ R784 (1 ≤ k ≤ n) is a vector
representing an image. Put

vvvk = (xk
1.1, . . . ,x

k
1.28,x

k
2.1, . . . ,x

k
2.28, . . . ,x

k
28.1, . . . ,x

k
28.28) (1 ≤ k ≤ n)

where xk
i j is a pixel value. Then, define

Si j = {xk
i j | 1 ≤ k ≤ n} (1 ≤ i, j ≤ 28).

Si j is a collection of pixel values at the location (i, j) from training data. Then, FRQ
and AVE are defined as follows.

FRQ: Select the integer value ui j that appears most frequently in Si j.

AVE: Compute the average value vi j of elements in Si j and put wi j = ⌊vi j⌋.

Put uuu=(u1.1, . . . ,u1.28,u2.1, . . . ,u2.28, . . . ,u28.1, . . . ,u28.28) and www=(w1.1, . . . ,w1.28,w2.1,
. . . ,w2.28, . . . ,w28.1, . . . ,w28.28). Then uuu and www are viewed as vectors that represent fea-
tures extracted by FRQ and AVE, respectively. We call uuu (resp. www) a feature vector by
FRQ (resp. AVE).

2.4 Classification of images

We next use the result of extracted features for classifying unlabelled test data. When
there are m classes, the classification is done using the following algorithm.

Algorithm 3: Classification of test data

Input : a vector vvv representing an unlabelled 28× 28 image, and the set of feature
vectors of training data: S = {uuuk | k = 1, . . . ,m}.

Output : the label of vvv.

1. For each class k (1 ≤ k ≤ m), compute

Dk = ∑
i j

| ui j − vi j | (1 ≤ i, j ≤ 28)

where ui j is an element in uuuk and vi j is an element in vvv.
2. Return l = k as the label of vvv where Dl is minimal among D1, . . . ,Dm.

The set S of feature vectors is obtained by one of GEN, FRQ, and AVE. The label
of a testing data is determined in a way that the sum of differences between pixel values
in each location is minimal.6

6 If Dl is not unique, the one with the minimum index l is selected.

6 Hien D. Nguyen and Chiaki Sakama

 GEN

FRQ

A9E

:

 &ODVV 0 &ODVV 1 &ODVV 2 &ODVV 3 &ODVV 4 &ODVV 5 &ODVV 6 &ODVV � &ODVV � &ODVV�

Fig. 3. Features of the MNIST dataset obtained by GEN, FRQ, and AVE

3 Experimental Results

We conduct experiments using two datasets, MINST hand-written digits and Fashion
MNIST,7 which are widely used as benchmark for feature learning. Each dataset is
split into two parts: the training set (60,000 images) and the test set (10,000 images).
The experimental testing is done by two stages: (i) extracting features from training
data using GEN, FRQ, and AVE; and (ii) classifying test data and computing their
Precision, Recall, and Accuracy to evaluate the methods. Precision, recall, and accuracy,
which are widely used measures in machine learning, are defined as:

Precision :=
T P

T P+FP
Recall :=

T P
T P+FN

Accuracy :=
T P+T N

T P+T N +FP+FN
where T P, T N, FP, and FN mean True Positive (correctly predicted as positive), True
Negative (correctly predicted as negative), False Positive (incorrectly predicted as pos-
itive), and False Negative (incorrectly predicted as negative), respectively.8

3.1 Testing on MNIST dataset

The MNIST data are classified into 10 classes (0−9). Then features are extracted in
each class using GEN, FRQ, and AVE. The results of feature extraction is shown in
Figure 3. By the figure, we observe that most digits produced by GEN and AVE are
readable, while those produced by FRQ are less readable. The precision, recall and
accuracy of three methods are summarized in Table 1. By the table, we can see that
AVE shows the maximum average of 94% in accuracy, 80% in precision and 66% in
recall. The accuracy of GEN and FRQ are around 90%. The 93% accuracy of FRQ is a
bit surprise because the output of feature extraction is less readable. The result indicates
that classification does not necessarily require the whole image of a digit.

3.2 Testing on Fashion-MNIST dataset

The Fashion-MNIST data is classified into 10 classes (Class 0:T-shirt/top, Class 1:Trouser,
7 http://yann.lecun.com/exdb/mnist/, https://www.kaggle.com/zalando-research/fashionmnist
8 Dataset, code, and results of testing are available at

https://drive.google.com/drive/folders/1Zno76nKDhENor-lEt9sQW7dYzPlyT4JQ?usp=sharing

Feature Learning by Least Generalization 7

Table 1. The precision, recall and accuracy on the MNIST dataset

Class GEN FRQ AVE
Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

0 0.42 0.91 0.94 0.75 0.65 0.94 0.82 0.94 0.98
1 0.93 0.49 0.88 0.92 0.80 0.96 0.99 0.35 0.79
2 0.19 0.86 0.91 0.39 0.65 0.92 0.42 0.97 0.94
3 0.61 0.50 0.90 0.70 0.61 0.92 0.62 0.72 0.94
4 0.80 0.34 0.83 0.79 0.71 0.95 0.67 0.83 0.96
5 0.51 0.38 0.88 0.24 0.34 0.89 0.33 0.87 0.94
6 0.44 0.60 0.92 0.72 0.67 0.94 0.79 0.86 0.97
7 0.17 0.61 0.90 0.70 0.62 0.92 0.77 0.86 0.96
8 0.22 0.66 0.91 0.59 0.59 0.92 0.44 0.86 0.94
9 0.33 0.32 0.86 0.52 0.58 0.91 0.78 0.69 0.94

Average 0.46 0.57 0.89 0.63 0.62 0.93 0.66 0.80 0.94

 GEN

FRQ

A9E

 &ODVV 0 &ODVV 1 &ODVV 2 &ODVV 3 &ODVV 4 &ODVV 5 &ODVV 6 &ODVV � &ODVV � &ODVV �

Fig. 4. Features of the Fashion-MNIST dataset obtained by GEN, FRQ, and AVE

Class 2:Pullover, Class 3:Dress, Class 4:Coat, Class 5:Sandal, Class 6: Shirt, Class 7:
Sneaker, Class 8: Bag, Class 9:Ankle boot). Figure 4 shows the results of feature extrac-
tion using three methods. By the figure, we can observe that GEN and AVE capture the
shape of each class with a few exceptions. Again, the output of FRQ is less clearer than
the others. The precision, recall and accuracy of each method are computed using test
data as in Table 2. As before, AVE outputs the highest values among three methods. It
is known that Fashion-MNIST is significantly harder than MNIST, while the proposed
three methods still keeps around the 90% accuracy.

4 Discussion

Feature learning from labelled data has been done using neural networks (NN). In deep
leaning models, features are extracted in hidden layers and then represented by the
neurons of the network. However, what is learned in NN is uninterpretable and left
as a black box. In contrast to the NN approaches, our approach based on symbolic
reasoning is interpretable and transparent. Representing an image data as a vector with

8 Hien D. Nguyen and Chiaki Sakama

Table 2. The precision, recall and accuracy on the Fashion-MNIST dataset

Class GEN FRQ AVE
Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

0 0.61 0.48 0.90 0.16 0.23 0.86 0.62 0.76 0.94
1 0.87 0.72 0.95 0.83 0.97 0.98 0.94 0.76 0.96
2 0.21 0.47 0.90 0.44 0.40 0.88 0.25 0.64 0.91
3 0.25 0.22 0.84 0.48 0.82 0.94 0.69 0.55 0.91
4 0.68 0.37 0.85 0.63 0.27 0.80 0.66 0.43 0.88
5 0.43 0.73 0.93 0.56 0.32 0.84 0.53 0.42 0.88
6 0.14 0.35 0.89 0.01 0.06 0.89 0.17 0.37 0.89
7 0.89 0.54 0.91 0.37 0.74 0.92 0.89 0.57 0.92
8 0.47 0.96 0.95 0.046 0.155 0.88 0.56 0.96 0.95
9 0.80 0.80 0.96 0.93 0.52 0.91 0.79 0.85 0.97

Average 0.54 0.56 0.91 0.45 0.45 0.89 0.61 0.63 0.92

pixel values, GEN, FRQ, and AVE compute feature vectors that represent features of
training data. Functions computing those features are explicitly given, then one can
understand reasons why test data is classified into some classes. In this respect, feature
learning in this paper realizes interpretable machine learning. Given n training data,
GEN is computed in O(n× log2 m) using m processors [13], and FRQ and AVE are
computed in O(n). Classification of a test data is done in O(l×k2) where l is the number
of elements in a vector vvv and k is the number of classes.

There are few studies on encoding image data into first-order formulas except [2],
which introduces an NN architecture called the first-order state autoencoder (FOSAE).
Given the feature vectors of objects in the environment, FOSAE automatically learns
to identify a set of predicates (relations) as well as to select appropriate objects as ar-
guments for the predicates. The resulting representation is used for classical planning.
The goal of [2] is not feature learning but predicate symbol grounding. It does not use
induction but uses NN to detect common pattern between objects that define a relation.

There are some approaches for integrating low-level perception in NN with high-
level reasoning in LP. Differentiable ILP (∂ ILP) [8] combines ILP and NN and learns
symbolic rules that are robust to noisy and ambiguous data. In the MNIST classification
task, a convolutional NN (ConvNet) is connected to ∂ ILP. When an image is fed into
the pretrained ConvNet, it predicts a probability distribution for the target variable. The
image is then converted to the most probable atom and is merged to ILP. DeepProbLog
[10] integrates NN and probabilistic LP in a way that the output of NN is encapsulated
in the form of neural predicates. In abductive learning [7], NN is used for obtaining
pseudo-labels from training data, which are then treated as groundings of the primitive
concepts for abductive reasoning in LP. These studies combine background knowledge
represented as LP with the output of NN, while raw data is processed using NN.

5 Concluding Remarks

This paper introduced new methods that learn features of labelled images by symbolic
reasoning, then classify unlabelled images by comparing them with learned feature vec-

Feature Learning by Least Generalization 9

tors. Our approach is purely symbolic and does not use NN for learning from image
data. To the best of our knowledge, this is the first attempt that realizes feature learning
using symbolic reasoning without relying on NN. Although the classification accuracy
achieved in this paper is still inferior to the state of the art of NN technologies,9 the cur-
rent paper shows potentials of symbolic reasoning for feature learning from raw data.

For efficient implementation, an algorithm proposed in [13] realizes parallel com-
putation of least generalization. In this paper, a pixel x is transformed to a term f k(z) in
a way that black is represented by f (z) and white is represented by f 4(z). This means
that least generalization of black and white becomes black, while one may argue that
the result should be gray. It would be interesting to realize an alternative transformation
from pixel values to terms and compare their effects. We continue to investigate more
robust and effective representation of raw data in terms of symbolic expressions, and its
application to data other than images.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial
intelligence (XAI). IEEE Access 6: 52138–52160 (2018)

2. Asai, M.: Unsupervised grounding of plannable first-order logic representation from images.
in: Proc. 21th Int’l Conf. Automated Planning and Scheduling, pp. 583–591 (2019)

3. Bengio, Y., Courville, A.: Representation learning: a review and new perspectives. IEEE
Trans. Pattern Analysis and Machine Intelligence 35(8): 1798–1828 (2013)

4. Chang, C. L., Lee, R. T. C.: Symbolic Logic and Mechanical Theorem Proving. Academic
Press, New York (1973)

5. Cropper, A., Dunmančić, S.: Inductice logic programming 30: a new introduction.
arXiv:2008.07912v3 (2021)

6. N-Cheng, S-H., De Wolf, R. Foundations of Inductive Logic Programming. LNAI, vol. 1228,
Springer, Berlin, Heidelberg (1997)

7. Dai, W., Xu, Q., Yu, Y., Zhou, Z. Bridging machine learning and logical reasoning by ab-
ductive learning. Advances in Neural Info. Processing Systems 32, pp. 2811–2822 (2019)

8. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. Journal of AI
Research 61:1–64 (2018)

9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, pp. 436–444 (2015)
10. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L. DeepProbLog: Neu-

ral probabilistic logic programming. In: Advances in Neural Information Processing Systems
31, pp. 3753–3763 (2018)

11. Muggleton (ed.): Inductive Logic Programming, Academic Press (1992)
12. Molnar, C.: Interpretable Machine Learning: A Guide for Making Black Box Models Ex-

plainable, Lulu.com (2020)
13. Nguyen, H. D., Sakama, C.: A new algorithm for computing least generalization of a set

of atoms, in: Proc. 29th Int’l Conf. Inductive Logic Programming, LNAI, vol. 11770, pp.
81–97, Springer, Berlin, Heidelberg (2019)

14. Plotkin, G. D.: A note on inductive generalization. Machine Intelligence, vol. 5, Edinburgh
University Press, pp. 153–163 (1970)

15. Reynolds, J. C.: Transformational systems and the algebraic structure of atomic formulas.
Machine Intelligence, vol. 5, Edinburgh Univ. Press, pp. 135–151 (1970)

9 99.87% accuracy (9.2021). https://paperswithcode.com/sota/image-classification-on-mnist

