
Noname manuscript No.
(will be inserted by the editor)

Detect, Understand, Act
A Neuro-Symbolic Hierarchical Reinforcement Learning
Framework

Ludovico Mitchener · David Tuckey ·
Matthew Crosby · Alessandra Russo

Received: date / Accepted: date

Abstract In this paper we introduce Detect, Understand, Act (DUA), a neuro-
symbolic reinforcement learning framework. The Detect component is composed
of a traditional computer vision object detector and tracker. The Act component
houses a set of options, high-level actions enacted by pre-trained deep reinforce-
ment learning (DRL) policies. The Understand component provides a novel answer
set programming (ASP) paradigm for symbolically implementing a meta-policy
over options and effectively learning it using inductive logic programming (ILP).
We evaluate our framework on the Animal-AI (AAI) competition testbed, a set
of physical cognitive reasoning problems. Given a set of pre-trained DRL policies,
DUA requires only a few examples to learn a meta-policy that allows it to im-
prove the state-of-the-art on multiple of the most challenging categories from the
testbed. DUA constitutes the first holistic hybrid integration of computer vision,
ILP and DRL applied to an AAI-like environment and sets the foundations for
further use of ILP in complex DRL challenges.

1 Introduction

Deep reinforcement learning (DRL) involves the use of neural networks as function
approximators in a reinforcement learning (RL) setting (Sutton & Barto, 2018).
In recent years, DRL systems have worked well when applied to complex games
(Berner et al., 2019; Schrittwieser et al., 2020). However, the extent to which ex-
celling at these video games can be used as a real proxy for intelligence is unclear
(Crosby et al., 2020). Current state-of-the-art (SOTA) DRL systems seldom ex-
hibit the most basic of human cognitive faculties such as causal inference, spatial
reasoning or generalisation (Garnelo & Shanahan, 2019; Crosby, Beyret, & Halina,
2019). For example, in a recent competition using the Animal-AI (AAI) testbed,
the top submissions, based on DRL methods, failed to solve common sense physi-
cal reasoning tasks from animal cognition such as object permanence and spatial
elimination (Crosby et al., 2020).

Ludovico Mitchener, David Tucky, Matthew Crosby and Alessandra Russo
Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
E-mail: ludo.mitchener@gmail.com, {david.tuckey17, m.crosby, a.russo}@imperial.ac.uk



2 Ludovico Mitchener et al.

Additionally, DRL methods inherit the drawbacks of neural networks includ-
ing: opacity or non-interpretability, poor generalization to samples outside their
training distribution, data inefficiency, and they are purely reactive, i.e. they do
not explicitly develop high-level abstractions necessary for causal or analogical rea-
soning which could be reused across tasks (Garnelo, Arulkumaran, & Shanahan,
2016). To address these shortcomings, which map exactly onto the main strengths
of symbolic AI, we propose a novel neuro-symbolic framework that combines the
strengths of both DRL and symbolic reasoning and learning using the options
framework (Garnelo & Shanahan, 2019; Sutton, Precup, & Singh, 1999).

Our framework, called DUA, is divided into three main components: Detect,
Understand and Act. The Detect component extracts an interpretable object rep-
resentation, in the form of a logic program, from the raw data of the environment
using traditional methods from computer vision. The Understand component im-
plements a novel Answer Set Programming (ASP) paradigm to learn a symbolic
meta-policy over options using inductive logic programming (ILP). Finally, the
Act component uses individually trained DRL agents that implement options.
The architecture may be loosely thought of as a two-systems solution (Kahneman,
2011; Booch et al., 2020): the DRL options represent the fast, reactive and non-
interpretable facets of intelligence while the symbolic meta-policy learning is the
substrate of the slow, logically rational and interpretable side of intelligence.

We evaluate our DUA framework on the AAI 2019 competition testbed and
demonstrate several key benefits. Given a set of pre-trained options, we demon-
strate few-shot learning by only requiring 7 training examples to learn a general
meta-policy which transfers within and between tasks to compete on a testbed of
900 unseen arenas. Training only on those 7 examples, DUA achieves state-of-the-
art in 7 testbed categories and above the top-10 average in 4 others, compared
to results from the competition. Its modular nature allows it to easily incorporate
new options and update or learn new meta-policies to solve completely new types
of tasks without having to retrain the whole system. Finally, DUA requires no
environment rewards to learn meta-policies, making it particularly adept at ex-
tremely sparsely rewarded settings. This work constitutes the first holistic hybrid
integration of computer vision, ILP and DRL able to solve common sense physical
reasoning tasks such as the animal cognition tasks in the AAI-like environment.

Our contributions are therefore fivefold:

– We propose a novel and general RL algorithm for learning first-order symbolic
meta-policies using ILP.

– We present a novel twist on hierarchical reinforcement learning (HRL) to in-
tegrate deep and symbolic learning in an RL setting.

– We showcase the first hybrid integration of computer vision, DRL and ILP.
– We adopt a new Event-Calculus inspired ASP paradigm to coordinate such

hybrid integration with agency.
– We evaluate our proposed framework in the AAI environment on the full 2019

competition testbed and achieve SOTA in multiple of the most challenging
categories.

The paper is organised as follows. In Section 2 we introduce the AAI environ-
ment and both the RL and ILP background required for the rest of the paper. In
Section 3 we briefly discuss the most relevant approaches in the literature. The rest
of the paper describes the DUA framework in detail (Section 4) followed by the



Detect, Understand, Act 3

experiments (Section 5) and results (Section 6). We finally conclude and suggest
avenues for future work.

2 Background

In this section we introduce the evaluation testbed and a brief summary of the RL
and ILP background material used in the paper.

2.1 Animal-AI

The AAI environment (Crosby et al., 2020) comprises of a small arena in which
various objects can be placed to recreate tasks used in animal cognition. To simplify
the environment in order to focus on the cognitive abilities being tested, the objects
are colour coded and of relatively few base types e.g. walls, ramps and food (reward
objects). To complete a task successfully an agent has to navigate the environment
to collect a predetermined amount of food (reward).

The environment uses the Unity physics engine to simulate realistic physical
behaviors such as gravity, friction, acceleration and collisions, and is built on top of
ml-agents (Juliani et al., 2018). The virtual equivalent of food is a green sphere with
associated reward proportional to its size. The agent also receives a constant, small
and negative, reward of -1/T at every time step, where T is the maximum number
of time steps per episode. The agent’s observations are comprised of coloured pixel
inputs of configurable resolution along with a three-dimensional velocity vector.
The agent uses a simple discrete action space capable of turning left, right and
going forwards or backwards.

The testbed consists of 900 tests broken down into categories, roughly corre-
sponding to different cognitive skills, such as object permanence or causal reason-
ing. Many categories are incredibly challenging for current SOTA DRL models.
For example, the spatial elimination category includes 27 tasks, only 7 of which
were solved in the competition. These tasks involve inferring the only possible lo-
cation that food could be in (behind an opaque object) and directing exploration
in that area. These tasks are purposefully designed such that an undirected (e.g.
random) exploration strategy will fail. On the other hand, it is not possible to ap-
ply symbolic learning methods directly to the environment due to the pixel inputs
and low-level control provided by the action space.

Tests within a category in AAI may vary greatly in terms of types of objects en-
countered and the layout of the environment. For example, the spatial elimination
category involves tests with maze-like arenas composed of walls, as well as other
tests involving forced-choice tasks with cylinders and blue platforms. As such, the
object types, their spatial configuration and the manner in which a cognitive skill
is being assessed all vary greatly within a category.

2.2 Reinforcement Learning

Reinforcement learning (Sutton & Barto, 2018) is a general method for training
agents to maximise cumulative reward. The problem is usually represented as a



4 Ludovico Mitchener et al.

Markov Decision Process, a tuple M = 〈S,A, p, r, γ〉, where S and A are respec-
tively a finite set of states and actions, p : S×A −→ δ(S) is the transition probability
function1, r : S × A × S −→ R the reward function and finally γ ∈ [0, 1) the dis-
count factor. Initially the optimisation problem may be formulated as, given a
state, choose an action that leads to highest expected return. This is known as the
action value function Qπ for policy π. The Q-value of a state-action pair may be
estimated from experience. By storing the average discounted return for taking an
action from each state, the averages will converge to the true action values Q(s, a).

Hierarchical Reinforcement Learning (HRL) leverages the intrinsic composi-
tionality of goals and sub-goals to simplify complex tasks using a divide and con-
quer strategy. Theoretically, decomposing a problem hierarchically can greatly re-
duce both space and time complexity in the learning and execution of the overall
task (van den Bosch et al., 2011).

Options (Sutton et al., 1999) are one of the most popular formulation of HRL.
They allow the RL agent to be divided into three components: primitive actions,
temporally extended actions composed of primitive actions, called options, and a
high-level policy over options. The high-level policy decides which option to initiate
at a given state. Options are executed until a termination criterion is met, usually
reaching a sub-goal or a timeout. The high-level policy is then queried again to
decide which option should be executed next.

2.3 Inductive Learning of Answer Set Programs

Answer Set Programming (ASP) (Gelfond & Lifschitz, 2000) is a declarative pro-
gramming paradigm used for knowledge representation and reasoning. We assume
a first-order ASP language composed of atoms, of the form p(t1, .., tn), where p is
a predicate of arity n (n ≥ 0) and t1, .., tn are terms (i.e. constants or variables),
and negative atoms, of the form not p(t1, .., tn) where not represents negation as
failure (K. Clark, 1987). A literal is an atom or a negative atom. Normal rules are
of the form:

h:- b1, . . . , bn, not c1, . . . , not cm

where h, b1, . . . , bn, c1, . . . , cm are atoms, n ≥ 0 and m ≥ 0. We refer to h as the
head of the rule and b1, . . . , bn, not c1, . . . , not cm (collectively) as the body of the
rule. A normal rule with n = m = 0 is also referred to as fact. We assume normal
rules to be safe, that is every variable in a rule occurs in at least one positive literal
in the body of the rule. A normal rule is ground if it does not contain variables.
Given an ASP program P , composed of a set of normal rules, the Herbrand Base
of P denoted as HBP , is the set of all ground atoms that can be formed from
predicates and constants in P . An Herbrand interpretation, I, is a subset of HBP .
Solutions (i.e. models) of an ASP program P are defined in terms of the reduct of
P . Given an ASP program P , composed of a set of normal rules, and an Herbrand
interpretation I ⊆ HBP , the reduct of P , denoted as P I , is constructed from the
grounding of P by (i) removing all the rules whose bodies contain the negation
of an atom in I, and (ii) removing all negative atoms from the remaining rules.
All rules in the reduct P I have no negative atoms in the body. An interpretation
I1 ⊆ HBP is an Herbrand model of the reduct P I if every rule r in P I is true in

1 Given a finite set X, δ(X) = {µ ∈ RX :
∑
x∈X µ(x) = 1, µ(x) ≥ 0} is the probability simplex over X.



Detect, Understand, Act 5

I1, that is either the body of r is not included in I1 or the head of r is in I1. An
Herbrand model I1 ⊆ HBP of the reduct P I is minimal if there is no Herbrand
interpretation I2 ⊂ I1 that is a model of P I . Any I ⊆ HBP is an answer set (or
solution of) P , if it is the minimal model of the reduct P I . Throughout the paper
we denote the set of answer sets of a program P with AS(P ).

Example 1 Consider the ASP program P given below, and the interpretation
I1 = {person(steve), goDoctor(steve)}. The reduct P I1 is the program P I1 =
{goDoctor(steve):- person(steve), sick(steve). sick(steve):- person(steve).
healthy(steve):- person(steve). person(steve).}. The reduct P I1 has the min-
imal model {goDoctor(steve), sick(steve), healthy(steve), person(steve)}
which is not equal to I1, so I1 is not an answer set of P . The pro-
gram P has three answer sets, A1 = {healthy(steve), person(steve)},
A2 = {sick(steve), call999(steve), person(steve)}, and A3 = {sick(steve),
goDoctor(steve), person(steve)}. They intuitively state that solutions to the
program P are situations where steve is sick or healthy. If steve is sick, he either
goes to the doctor or calls 999. For a more detailed explanation of the semantics
of ASP programs, please see (Gelfond & Lifschitz, 2000).

P =


call999(X):- person(X), sick(X), not goDoctor(X).
goDoctor(X):- person(X), sick(X), not call999(X).
sick(X):- person(X), not healthy(X).
healthy(X):- person(X), not sick(X).
person(steve).

ASP allows also optimisation over the answer sets, according to weak constraints.
These are rules of the form:

:∼ b1, . . . , bn, not c1, . . . , not cm.[w@p, t1, ..., tk]

where b1, . . . , bn, not c1, . . . , not cm for (collectively) the body of the constraint,
w and p are integers specifying respectively the weight and the priority level,
and t1, . . . , tk are terms that appear in the body of the constraint. We refer to
[w@p, t1, . . . , tk] as the tail of the constraint. A ground instance of a weak con-
straint W is obtained by replacing all variables in W (including those in the tail
of W ) with ground terms. Weak constraints do not affect what is, or is not, in an
answer set of a program P . They create an ordering over the set AS(P ) of answer
sets, which defines which answer sets are better than another. Informally, given a
program P with weak constraints, and an interpretation I, we can construct the set
of tuples (w, p, t1, . . . , tk) for which there is a ground instance of a weak constraint
in P whose body is satisfied in I and whose (ground) tail is [w@p, t1, . . . , tk]. At
each level p, the score of I is given by the sum of the weights w of all such tuples
with level p. So an interpretation I1 is better than an interpretation I2, written
I1 ≺ I2, if there is a level p for which I1 has a lower score than I2 and there is level
higher than p, for which I1 and I2 have different score. An answer set A ∈ AS(P )
is optimal if there is no other answer set A1 ∈ AS(P ) that is better than A. Note
that an ASP program P with weak constraints may have multiple optimal answer
sets. For further details, see (Calimeri et al., 2019).

Example 2 Consider the ASP program given in Example 1, extended with the
following weak constraints:



6 Ludovico Mitchener et al.

:∼ sick(X).[2@2, X]

:∼ call999(X).[5@1, X]

Applying the weak constraints to the three answer sets of P (given in Example 1),
at priority level 1, A1 and A3 have equal lower score (equal to 0) than A2, which
has score 5. But at the higher priority level 2, A1 has lower score (still equal to 0)
than A3, which has score 2). So, A1 is the optimal answer set, followed by A3 and
then A2.

In this paper, we consider ASP programs to be composed of normal rules and
weak constraints.

ILASP (Law, Russo, & Broda, 2020) is an ILP framework for learning ASP pro-
grams. It includes a family of SOTA systems capable of learning (in principle) any
class of ASP program. We present here an adapted definition of the notion of induc-
tive learning of answer set programs that is specific to the class of ASP programs
that are learned by our DUA framework2. The task of learning from answer sets
makes use of two types of examples: context-dependent partial interpretations and
context-dependent ordering examples. introduce first the notion of partial interpre-
tations. A partial interpretation e is a pair of sets of atoms 〈einc, eexc〉. An answer
set A is said to extend a partial interpretation e if einc ⊆ A and eexc ∩ A = ∅.
A context-dependent partial interpretation (CDPI) is a pair 〈e, C〉, where e is a
partial interpretation and C is an ASP program with no weak constraints, called
context of the partial interpretation e. A context-dependent ordering example o
is a pair of CDPIs 〈〈e1, C1〉, 〈e2, C2〉〉. An ASP program P bravely respects o if
there is at least one pair of answer sets 〈A1, A2〉, where A1 ∈ AS(P ∪ C1) and
A2 ∈ AS(P ∪ C2), such that A1 extends e1, A2 extends e2 and A1 ≺ A2.

In our DUA framework, a learning from answer set task T is formulated as:

T = 〈B,SM , E,O〉 (1)

where B is an ASP program called background knowledge, SM set of rules (normal
rules and weak constraints) allowed in hypotheses, called hypothesis space, E is a
finite set of context-dependent partial interpretations, called examples, and O is a
finite set of context-dependent ordering examples. An hypothesis H is an inductive
solution of T if and only if the following conditions hold: (i) H ⊆ SM , (ii) for every
〈e, C〉 ∈ E there exists an answer set A ∈ AS(B ∪ C ∪ H) that extends e; (iii)
for every o ∈ O, B ∪ H bravely respect o. Learning an answer set program H
means computing an inductive solution of a given learning from answer set task
T = 〈B,SM , E,O〉. Intuitively, a learned hypothesis (or ASP program) complies
with the bias SM , covers all the given examples and includes weak constraints
so that its answer sets respect the given ordering examples. DUA uses the ILASP
system (Law et al., 2020) to compute inductive solutions that are essentially meta-
policies over options. In Section 4 we describe how a learning from answer set task
T = 〈B,SM , E,O〉 is defined to compute such policies, in particular what the
hypothesis space SM is, and how examples E and O are generated.

In DUA we make use of all these methods. The Understand component learns
an ASP program with weak constraints that defines an agent’s high-level policy

2 For a general definition of the learning from Answer Sets framework the reader is referred to (Law,
Russo, & Broda, 2018).



Detect, Understand, Act 7

over options. The Act component houses the options: low-level policies learned
using DRL. Finally, the integration of low-level and high-level policies is inspired
by the options framework from HRL.

3 Related Work

In recent years an increasing body of research has been dedicated to merging sym-
bolic and neural systems in an attempt to reap the advantages of both (Marcus,
2020). Such systems have proven their worth on various tasks ranging from reason-
ing on unstructured data (Minervini, Bošnjak, Rocktäschel, Riedel, & Grefenstette,
2019; Gupta, Lin, Roth, Singh, & Gardner, 2019; Cunnington, Russo, Law, Lobo,
& Kaplan, 2020), to visual question answering (Mao, Gan, Kohli, Tenenbaum, &
Wu, 2019; Yi et al., n.d.; Han et al., n.d.), to learning proofs (Fawzi, Malinowski,
Fawzi, & Fawzi, 2019; Cranmer, Xu, Battaglia, & Ho, 2019), to competing in RL
tasks (Zamani, Magg, Weber, & Wermter, 2017; Bougie, Kai Cheng, & Ichise,
2018; Garnelo et al., 2016) and even solving 8th grade science exams (P. Clark
et al., 2019). Neuro-symbolic methods may be broadly separated into those that
attempt to fuse symbols into the fabric of neural networks themselves (Dong et al.,
2019; Liao & Poggio, 2017; Zhang & Sornette, 2017; d’Avila Garcez et al., 2019;
Manhaeve et al., 2018) and those that connect the two by either using neural net-
works to bring unstructured data amenable to symbolic systems or enhance deep
systems with symbolic priors. Our approach falls within the latter and so will our
overview of related work, in particular within RL.

Garnelo et al. (2016) were amongst the first to show the promise of hybrid
methods in RL. Using symbolic common-sense priors, such as object permanence,
the authors augment their observation space for a simple RL task. They show that
their method generalizes better than a simple DQN to unseen, similar tasks.

More recently, others have followed suit (Zamani et al., 2017; Bougie et al.,
2018) in augmenting observation spaces with symbolic representations of their
environments to give their agents strong informative priors. Zamani et al. (2017)
use a symbolic representation composed of subgoals that boost RL performance
by providing intermediate rewards. The work from Bougie et al. (2018) is more
directly related to our approach as it is also tested in a complex partially-observable
video game environment. They employ a similar pipeline approach whereby the
agent receives images as input and the images are enhanced by adding strong
symbolic priors related to the environment. Both Zamani et al. (2017) and Bougie
et al. (2018) demonstrate significant improvements in results over their purely
DRL counterparts.

Another interesting approach comes from Furelos-Blanco et al. (2021). Induc-
tion subgoal automata (ISA) uses ASP within the context of HRL, not only to
learn the hierarchical structure of the automata, but also the sub-policies them-
selves. ISA is fully interpretable and trained in a non-differentiable, yet end-to-end
fashion. Although its implementation is purely symbolic, the authors suggest ways
in which it could use DQN rather than tabular-Q learning. The symbolic infer-
ence and induction of hierarchical options in ISA shares similarities with our own
approach, namely the use of the HRL options framework, ASP and ILASP. Other
approaches also based on a similar idea of using or learning reward automata to
guide the RL agent include (Hasanbeig, Jeppu, Abate, Melham, & Kroening, 2019;



8 Ludovico Mitchener et al.

Xu et al., 2020), where reward automata are inferred, by SAT solving, from ex-
ploration traces and used to “orchestrate” sequencing of low-level actions in the
RL agent, and (Icarte, Klassen, Valenzano, & McIlraith, 2018) where reward au-
tomata are manually engineered and used in an interleaved fashion with the RL
agent’s exploration. These existing reward automaton based methods differ from
DUA in the fact that our meta-policy is learned from execution traces and not
inferred using SAT solving or manually engineered, and it is not used to compute
at each iteration, but mainly to guide the choice of options.

Neuro-symbolic techniques have also been used to efficiently verify the safety
of DRL policies for use cases where safety violations are unacceptable (Anderson,
Verma, Dillig, & Chaudhuri, 2020). Relational reasoning inspired by symbolic AI
has also been shown to be beneficial in certain RL environments (Shanahan et
al., 2020). Furthermore, with the growing importance of graph theory within ML,
graphs are increasingly being used to represent compositional scene structure and
symbolic relations (Jiang, Dun, Huang, & Lu, 2018; Hart & Knoll, 2020). Graph
neural networks are number and order invariant, while explicitly incorporating
relations, voiding the need for them to be inferred. This makes graphs ideal can-
didates for semantic environments, benefiting from object-centric understanding
(Hart & Knoll, 2020).

Others have explored the use of program synthesis applied to RL. In Sun et
al. (2020) and Andreas et al. (2017) high-level policies are hard-coded and then
the options are learned using RL. While the idea of using a program for high-level
policies is similar to our approach, our approach differs in the following ways. We
learn both the high-level policy and the options, albeit separately with the op-
tions being pre-trained. We use inductive learning of ASP programs that supports
relational knowledge discovery rather than function-based program induction and
does not rely on types. Our learning components can learn programs with general
relations, using also non-monotonic semantics in the presence of incomplete infor-
mation, which is not applicable to program synthesis. As such, program synthesis
can be seen as a special case of our symbolic learning approach in which general
relations are restricted to functional relations. A final distinction is that in our
DUA framework the symbolic system is the “reinforcement learner” (i.e. learning
the policy in the shape of weak constraints) and not used to guide a separate RL
model as in other works of program synthesis (Yang et al., 2021) and generalised
planning (Srivastava, 2011; Icarte et al., 2018).

These works provide a promising glimpse into what is possible by boosting
DRL methods with meaningful symbolic-informed priors. Not only do they often
increase performance and data-efficiency, but they also allow for a higher degree of
interpretability. To the best of our knowledge, however, there has been no neuro-
symbolic RL method that goes beyond using symbolic AI simply as an inductive
bias rather than as a central component in a complex 3D environment, as it is
the case of our DUA framwork. No example has been found of neuro-symbolic
RL agents that benefit from the expressivity and symbolic dexterity afforded by
formal logic programming (LP) languages such as ASP, and methods for learning
ASP programs such as the ILASP system used in DUA.



Detect, Understand, Act 9

Fig. 1: Example macro-step through the Detect, Understand, Act architecture.

4 DUA

We now introduce the DUA approach. First with a high-level overview, and then
with a detailed description of each of its components. Although DUA is a general
framework, to illustrate its components better, we describe how each component
has been designed to learn and solve tasks in the AAI environment. In Section 6.3
we comment on applying the DUA approach beyond the AAI environment.

4.1 Overview

DUA operates on two different levels of temporal abstraction. The lower level
operates in the same time and action space as the RL environment. This level
of temporal abstraction will be referred to as the micro-level. DUA is capable of
initiating actions referred to as options which persist across often hundreds of
environment timesteps. This timescale will be referred to as the macro-level. DUA
has two types of policies, a high-level meta-policy on the macro-level that maps
symbolic states to options, and the options themselves which map environment
observations to discrete actions on the micro-level.

DUA is named after its three components: Detect, Understand and Act (see
Figure 1 for instantiation of DUA in the AAI environment). The Detect module
receives information from the environment at each timestep and filters it into
a meaningful representation. The Understand (reasoning and learning) module
processes this symbolic representation of the environment and infers the correct
option to initiate given the current state by using the learned meta-policy. The
Act component is composed of the options which are pre-trained DRL agents.
Each option takes as input a filtered version of environment observations based
on the instructions of the Understand component. For example, if the Understand
component decides to ‘interact with object x’, only features of the environment
pertaining to object x will be fed to the corresponding option. The option will
then execute until a stopping criterion is met and a new query to the Understand
component is made to decide on the next option to execute.

4.2 Detect

This module serves to “ground the world.” For an agent in an RL environment,
the role of the Detect module is to filter the raw and noisy image tensor into the
salient features which are most useful to maximise its reward. The Detect module



10 Ludovico Mitchener et al.

parses the image into a set of bounding boxes, making use of the colour coding of
objects used in AAI. The object detector recognises colour ranges and associates
them with known object types. We use centroid tracking to keep track of objects
over time (Nascimento, Abrantes, & Marques, 1999). Objects no longer visible
persist in memory for a preset number of timesteps.

Finally, the Detect component translates the bounding boxes’ information into
an ASP program composed of ground facts. It also computes simple arithmetic-
based heuristics over bounding boxes to detect relations between objects in the
scene, such as relative position, and adds it to the ASP program. We call this
set of facts in the generated ASP program the observables. An example of facts
generated is the following:

platform(1).

goal(0).

on(0, 1).

stating that a goal on a platform is visible to the agent. The numbers are identifiers
given by the centroid tracking to each object. The calculations used to determine
on(x, y) and other relations are detailed in the Appendix.

4.3 Understand

The Understand module may be considered to be the foundation of our approach.
It is in charge of learning how to act appropriately to solve tasks, and reasoning
over the high-level symbolic state of the environment. The Understand component
is itself split into two sub-components: 1) an ASP program containing the meta-
policy (policy over options) and common sense background knowledge (detailed in
the Appendix) and 2) the ILASP learner which learns the meta-policy.

When queried, the Understand module adds to its ASP program the set of
observables and outputs the optimal option to execute. The ASP program contains
a set of rules that augment the observation space from the Detect module with
common sense rules, such as a goal is always present even if not visible, and a
set of rules that instantiate all of the possible options to execute, together with
what type of object they should attend to. There is one option per answer set of
this ASP program: the answer sets of this program represent all of the possible
options that can be selected at a given time. The meta-policy itself takes the
form of a set of weak constraints that rank the answer sets and thus the possible
options. The option to execute is the one corresponding to the optimal answer set
(when multiple answer sets are optimal, one is chosen at random). The set of weak
constraints are learned from environment traces as described in Section 4.5.

The representation of sequential events in our ASP program draws inspiration
from Event-Calculus (Sadri & Kowalski, 1995; Kowalski & Sergot, 1989). Time
is decomposed into discrete events over which our program reasons and decides
what options to execute following certain events. Although the events themselves
span over irregular time frames in the environment, the events are perceived as
quasi-instantaneous by the ASP program which reasons over a single event at a
time.



Detect, Understand, Act 11

4.4 Act

The Act component houses the set of options, which are pre-trained DRL agents
that correspond to sub-goals. In our application to AAI, we use 9 pre-trained
options (detailed in the Appendix). These are:

– interact(X): goes to touch object X
– explore(X, Y): explores behind object X to find object Y
– balance(X, Y): traverses along object X without falling to reach object Y
– climb(X): climbs up object X (for ramps)

The Act component receives the identifier of the option to execute, along with
some configuration indicating the stopping criteria and what its inputs are. For
example, when we climb an object with identifier X, the bounding box of the
object X is fed as input to the climb policy which terminates when the agent has
reached the peak of the ramp or times out. It oversees the course of the option in
the environment and then calls the Understand module upon termination.

We use Proximal Policy Optimisation (Schulman, Wolski, Dhariwal, Radford,
& Klimov, 2017) as our DRL algorithm of choice for AAI as it works with discrete
action spaces, is easy to implement, requires little fine-tuning, and has been shown
to perform well over a wide variety of benchmarks (Schulman et al., 2017).

4.5 Inductive Meta-Policy Learning

This section describes the core of our contribution, that is our approach for learning
a symbolic meta-policy over options which we call Inductive Meta-Policy learning
(IMP). We collect meta-traces from option-environment interactions and translate
them into a learning from answer sets task. These traces are not the environment
traces, but the sequence of states and actions as viewed from the macro-level in the
Understand module: the state of the world (expressed in the ASP program), when
it was queried and which option was then executed. The environment timesteps
are ignored in these meta-traces as we are only interested in learning which option
to choose, since the execution of such option is left to the Act module.

We formalise the collection of meta-traces as a set T of tuples 〈G,P 〉, where
G is a meta-trace and P is a boolean. Each tuple in T corresponds to a collected
episode. A meta-trace G is composed of pairs of partially observable symbolic
meta-states s and options o. A meta-state is composed of all detected observables
at a single macro-step, along with all the high-level relations between the agent and
the objects inferred (via the background knowledge in the ASP program) by the
Understand module. In other words, a meta-state is the set of all the true logical
atoms in the Understand module at a given macro-state (when the Understand
module is queried). The meta-trace is then the sequence of “symbolic” meta-states
of the system and the options executed after each of these states is observed. For
simplicity, we shall henceforth refer to meta-states simply as states. The boolean
P for each episode represents the success or failure of the episode: -1 means the
agent failed to solve the task and 1 means it succeeded. n is the number of meta-
traces. Note that importantly, IMP, unlike RL methods, does not use environment
reward. Instead, it only considers the binary outcome P : whether the meta-trace
leads to success or failure.



12 Ludovico Mitchener et al.

In order to learn a meta-policy, we need to transform this set T into a learning
from answer sets task. Meta-policy learning happens in three steps:

1. Collect the meta-traces by running the agent in the environment and at each
macro-step randomly picking options to execute. We store the meta-traces
along with their respective episode success in the set of tuples T .

2. We abstract each meta-trace: we map the state-option pairs in the meta-traces
in T to a set Ta of tuples including the abstract state-option pairs and associated
expected return. This step finds in T similar state-option pairs and combines
them to obtain a value akin to a Q-value.

3. We map the generated set Ta into a learning from answer set task Ti to learn
the meta-policy πmeta

Preprocessing: Abstraction and Q-value calculation. A difficulty arises
when attempting to compare two similar symbolic states. Take for exam-
ple the two state-option pairs: goal(0).platform(1).on(0, 1).interact(0) and
goal(1).platform(2).on(1, 2).interact(1). They are equivalent, yet they differ due
to the id assigned by the centroid tracking. To abstract away from object iden-
tifiers we modify the atoms such that the specific identifiers are replaced with
abstract tokens. For example, the symbolic state-option pairs in the previous ex-
ample both become goal(a).platform(b).on(a, b).interact(a). This allows us to
recognise that multiple state-option pairs correspond to the same abstract state-
option pair and are thus comparable. We shall refer to these abstract state-option
pairs henceforth as abstract pairs.

Now, to obtain a numerical value akin to a Q-value, we assign to the last state
in each meta-trace G a reward of 1 or −1, given by the value of P associated
with G in the tuple 〈G,P 〉 ∈ T . All preceding state-option pairs in the same
meta-trace are then assigned a discounted return using a discount factor γ, as it
is common in reinforcement learning. Since the state-option pairs are merged into
their respective abstract pairs, we average their associated reward to compute the
expected return, or Q-value, for each abstract pair :

Q(s̄, ō) = E{Ri|si ≈ s̄, oi ≈ ō} =
1

k

k∑
i=1

Ri (2)

where s̄ is an abstract state, Ri are all individual discounted rewards associated
with state-option pairs that are equivalent to the abstract pair {s̄, ō} and k is the
number of such equivalent state-option pairs.

The two pre-processing steps (i.e. computation of abstract pairs and calcula-
tion of associated Q-values), produce at the end a set Ta of tuples 〈s̄, ō, Q(s̄, ō)〉,
containing all abstract pairs and their associated expected return. This set Ta is
used to generate a learning from answer set task Ti = 〈B,SM , E,O〉 as defined
below. A solution H to this learning task is a set of weak constraints that we call
a meta-policy.

Constructing the learning from answer sets task. The Understand compo-
nent of DUA generates a learning from answer set task Ti = 〈B,SM , E,O〉. The
background knowledge B = ∅, the hypothesis space SM is defined as set of
weak constraints of the form

:∼ ō, ob1, . . . , obi[−1@l, M]



Detect, Understand, Act 13

where ō is a single positive option, ob1, . . . , obi, for i ≤ n are (negative) ob-
servables, and n is the maximum number of literals allowed in a rule. The tail
[−1@l, M] of each weak constraint has weight −1, a priority level l and as M, all
the variable terms that appear in the body of the constraint. Each of these weak
constraints represents a preference to execute the option ō if the condition de-
scribed by ob1 . . . obi is met. The maximum priority level allowed is equal to 1.5
times the number of options. This ensures that we have a priority level for every
option as well as some margin for capturing more complex dependencies. Object
types such as wall(X) are not included in the hypothesis space as they are implicit
in the construction of the option space.

The examples E is a set of pairs ei = 〈〈einci , eexci 〉, ci〉, each representing
an abstract pair. The partial interpretation 〈einci , eexci 〉 of each example is empty,
i.e. einci = eexci = ∅, and the context ci of each example ei is an abstract pair
represented as a set of facts3. The ordering examples O define ordering pairs
over the examples in E. It is this set O of ordering examples what allows us to
express preference over choosing an option over another for a given state. For every
abstract state the single optimal option, that is the option with highest expected
return in Ta, is pairwise ordered with respect to all other options taken from
that abstract state. In other words, we ask ILASP to prefer the answer sets where
this optimal option appears for its given abstract state. There are no orderings
between abstract states nor between sub-optimal options within abstract states. For
example, in the abstract state where a goal and two walls are visible, interact with
goal is preferred to rotate and avoid goal. However, there is no ordering between
rotate and avoid goal. This would be represented, for instance, by the following
context-dependent examples e1, e2 and e3 and related ordering examples o1 and
o2:

e1 = 〈〈∅, ∅〉, {goal(a), initiate(interact(a)), wall(b), wall(c)}〉
e2 = 〈〈∅, ∅〉, {goal(a), initiate(rotate, wall(b), wall(c)}〉
e3 = 〈〈∅, ∅〉, {goal(a), initiate(avoid(a), wall(b), wall(c)}〉
o1 = 〈e1 ≺ e2〉
o2 = 〈e1 ≺ e3〉

5 Experimental Setup

5.1 Option Training

Each option is trained with identical hyperparameters i.e. no hyperparameter tun-
ing is necessary. For each option, a distribution of arenas is defined and the agent is
trained by randomly drawing an arena from this distribution for each new episode.
For example, for the balance option, the arena distribution contained various con-
figurations of goals on platforms, requiring the agent to balance along the platform
to reach the goal. The full list of options and their corresponding training envi-
ronments are described in the Appendix.

3 Note that the representation of abstract pairs as context of an example is sufficient in our case, since
the learning from answer sets task in IMP is aimed at learning only weak constraints.



14 Ludovico Mitchener et al.

To accelerate training, we make use of reward shaping as well as observation
filtering unique to each option. For example, the balance agent only ‘sees’ the
bounding box of the goal and a masked image only showing platforms.

The set of options used is chosen a priori, but not how they are used. The
meta-policy learned is dependent on the set of options available. We conducted an
experiment analysing how DUA behaves when using different subsets of our set
of options. It showed that the framework adapted to the set of options available
without having to “know” what the effects of the options are i.e. it can be applied
for any set of options.

5.2 IMP Training

Once all the options are pre-trained, we create a training set of 7 arenas (detailed
in the Appendix), deemed sufficient for the agent to learn an effective meta-policy.
At each macro-step, the agent randomly chooses from the options available. The
options are object-type sensitive and so for a given state, only certain options
will be available, those for which their object-type is present. Using the example
of balance again, this option will only be available when there are platforms
detected in the environment. Furthermore, for each training arena, we enforce early
stopping by constraining the number of macro-steps to be the minimal number
of steps necessary to successfully complete the arena. Training continues on each
arena until it has reached a heuristic number of successful episodes. The collection
of traces is parallelisable both within and between training arenas as generating
traces is independent from one arena to another.

Once the traces are collected, they are pre-processed and learning from answer
sets task is automatically generated as described in Section 4.5. The learning
system ILASP used by the Understand component returns then a hypothesis.
This is stored and used to solve the AAI testbed.

6 Results

In this section we compare the performance of our DUA framework to the sub-
missions to the 2019 AAI competition, and analyse various aspects of inductive
meta-policy learning.

6.1 AAI Competition

To evaluate DUA we implemented 9 options and created 7 training arenas. The
final meta-policy learned is displayed below:



Detect, Understand, Act 15

:∼ initiate(climb).[−1@11].
:∼ danger, initiate(observe), on(agent, platform).[−1@10].
:∼ initiate(drop(V1)), moregoals(V1).[−1@9, V1].
:∼ initiate(collect), notlava.[−1@8].
:∼ initiate(interact(V1)), notdanger, noton(goal, platform).[−1@7, V1].
:∼ initiate(explore(V1)), occludesmore(V1, V2).[−1@6, V1, V2].
:∼ initiate(explore(V1)), occludes(V1).[−1@5, V1].
:∼ initiate(avoid).[−1@4].

:∼ initiate(balance).[−1@3].
:∼ bigger(V1, V2), initiate(interact(V1)).[−1@2, V1, V2].
:∼ initiate(rotate).[−1@1].

The above meta-policy may be read as a ranking over options constrained by
certain relations. Below is a line by line translation in plain English. A given line
is only used if there are no lines above it that are true.
If a ramp is available then climb it.
If the agent is on a platform and there is lava near the goal,
then observe the arena dynamics.
If there are more goals on one side of a platform you are on, then go to that side.
If there’s no lava, collect multi-goals.
If there’s no lava around the goal and the goal is not on a
platform go get it.
Explore the object most likely to be occluding the goal.
If an object occludes the goal, go explore it.
If there is lava, fetch the goal while avoiding lava.
If the agent is on the platform, then balance on the platform
to get to goal.
If goal V1 is bigger than goal V2, go get goal V2.
If nothing is visible, rotate 360 degrees until an object is visible.

As such, the final policy can be analysed to give insights into reasons for the
behaviour of the agent and is therefore interpretable to some extent.

Figure 2a shows our method compared to the current high score within each
category achieved by any of the 60 submissions submitted to the 2019 competition.
We are comparing our model against the best of all submissions for each individual
category. We outperform all 60 competitors’ submissions on multiple of the most
challenging categories. DUA achieves state-of-the-art results in all the categories
related to the 7 training arenas, with the exception of y-mazes, where it still
outperforms the top 10 average. This suggests that the meta-policy learned is
robust and can generalise to a variety of cognitive reasoning tasks outside its
training distribution.

The Overall scores reported in the results include even the tests for which the
agent cannot detect the objects in the domain. Due to limitations of the Detect
module using colour references, there are many object types (e.g. transparent walls
and boxes) that are not detected. This means that the agent fails all such tasks.
Despite this, it still would have come 3rd overall in the competition.

6.2 Inductive Meta-Policy Learning

We now analyze various aspects of our inductive meta-policy learning (IMP) al-
gorithm including the scalability of IMP at solving new problems by giving it



16 Ludovico Mitchener et al.

20

40

60

80

100

Moving food

Unreachable food

Y mazes

T-Maze

Hot zones

Basic food and obstacles

Multiple food stationary

Internal models
NumerosityDelayed gratification

Support and gravity bias

Multiple food moving

Radial mazes

Avoid red

Spatial Elimination

Ramp usage

Object permanence
SOTA
Top 10 Average
DUA

(a) Radar Plot

Basic Food
and

Obstacles

Avoid
Red

Ramp
Usage

Y-Mazes Numerosity Spatial
Elimination

Object
Permanence

Overall
0

20

40

60

80

100

S
co

re
 %

Basic
Lava
Ramp
Preference
Count
Spatial Elimination
Object Permanence

(b) Incremental Training

Basic Food
and

Obstacles

Avoid
Red

Ramp
Usage

Y-Mazes Numerosity Spatial
Elimination

Object
Permanence

Overall
0

20

40

60

80

100

S
co
re
 %

1
2
3
4
5
10
15
20
25

(c) Training Successes Required

Fig. 2: (a) Radar plot comparing success rate per category between SOTA, average of top 10
2019 submission and our approach: DUA. (b) Category and overall performance by incremental
training set. The training arenas and options are added cumulatively. For example, the blue
test run Object Permanence has also been trained on all the previous training arenas from
Basic to Spatial Elimination. (c) Category and overall performance by number of successes per
training arena observed during meta-policy learning. Scores from all figures represent mean ±
s.d. from 10 separate evaluations.



Detect, Understand, Act 17

more options, the very small sample of training arenas sufficient to learn a general
meta-policy, and finally its convergence properties.

6.2.1 Transfer, Scalability and Generalisation

Unlike current DRL systems which usually require complete retraining to solve
tasks outside their training distribution, it is sufficient to provide DUA with a
single example of a new task and any options it may require. AAI contains a wide
variety of tests for each category, yet we find that DUA only requires one example
arena per category in order to generate the results in Figure 2.

To illustrate IMP’s capacity at few-shot generalisation, we analyse the effect
of incrementally adding one arena at a time to the training set. In Figure 2b we
show how the scores improve as new training arenas and options are added. For
example, the first system in red is just trained on the basic food and obstacles
arena and does not have any of the options required to avoid red objects or climb
ramps. Once we provide it with the avoid option and a single example of a training
arena with a red object, the meta-policy adapts to include avoiding red objects and
remains robust as more options are added. This is shown in Figure 2b by the jump
in performance between the Basic bar and Lava bar on Avoid Red tasks. Likewise
for ramp usage, numerosity and object permanence. The scores for some tasks
fluctuate because objects in AAI do not always have the same uses. For example,
our agent might learn in the ramp usage category to balance on platforms, while
in spatial elimination it needs to chose a side of the platform to drop off of. As
such, the performance does not necessarily always increase for each category when
adding new training arenas and options. A detailed explanation for the results in
Figure 2b is included in the Appendix.

6.2.2 Fine-tuning the Meta-Policy

We also investigated how many successful meta-traces IMP requires to learn a
general meta-policy effective on the whole testbed. Our results in Figure 2c show
that with very few positive examples the overall meta-policy already becomes
competent at a wide variety of tasks. However, the competency seems unstable
for certain categories such as numerosity and spatial elimination. We interpret
this as simple policies are very quickly learned enabling an immediate jump in
performance. However, more intricate dependencies require more fine-tuning. For
example, when the agent is on a platform, balancing on it towards the goal is only
an optimal action if the goal is also on the platform. With the run number 20, the
meta-policy misses this and always balances on platforms, leading to losses in the
numerosity and y-mazes tasks where the agent must choose a side to drop from
the platform.

This quick gain in performance followed by fine-tuning instability is corrobo-
rated by analysing the evolution of Q values during training where optimal actions
quickly separate from sub-optimal actions, but optimal actions then require fur-
ther meta-traces to stabilise on slight preferences between optimal actions. In the
next section we also analyse the number of successful traces required to learn a
meta-policy for each single training arena and again found that only 1-4 examples
are required.



18 Ludovico Mitchener et al.

Fig. 3: Required number of successes observed to converge on an optimal meta-policy for an
individual training arena ± s.d. from 10 separate evaluations.

6.2.3 One-shot and few-shot learning on individual training arenas

To illustrate the fact that IMP only needs a few successful meta-traces, we trained
DUA on one training arena at a time and recorded how many successful meta-
traces IMP needed to learn a policy on each. This can be seen in Figure 3. The
score is obtained by testing the learned meta-policy on the set of arenas from
AAI corresponding to the skills taught by this training arena. In most cases it
demonstrates one-shot learning, requiring a single positive example to learn the
optimal meta-policy for a single training arena. At the same time, Figure 3 shows
that the meta-policy learned on each individual training arena generalises well to
the arenas of the same category in the AAI testbed. Interestingly, the higher the
likelihood of success from taking random options on a given arena, the more iter-
ations IMP requires to converge. This is to be expected as in categories such as
numerosity or y-mazes, often offering the agent a forced choice, choosing randomly
usually guarantees success 50% of the time. It is thus harder for the meta-policy
learner to dissociate effective vs lucky actions. The number of successes required,
however, still remains under four for all arenas from the training set. DUA’s ca-
pacity to perform one-shot learning is due to it learning a robust behavioral policy
consistent with a high-level interpretable understanding of what cognitive skills
the category requires.

6.2.4 Convergence of Meta-Policy Q-values

We also analyse how the distribution of Q-values evolves during meta-policy train-
ing. Initially the Q-values are spread out and then very quickly two clusters start
to form: a large cluster of sub-optimal abstract pairs with low Q-values and then
a smaller cluster of optimal abstract pairs. The final distribution is visualised in
Figure 4.



Detect, Understand, Act 19

0 5 10 15 20
Q-value

0

20

40

60

80

N
um

be
r o

f A
bs

tra
ct
 P
ai
rs

Fig. 4: Final distribution of Q-values at the end of meta-policy training.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Successes

20

40

60

80

100

120

N
um

be
r o

f A
bs

tra
ct
 P
ai
rs

Fig. 5: Evolution of number of abstract pairs throughout meta-policy learning.

The number of abstract pairs experienced following a purely random policy
converges to around 120. This indicates that during meta-policy training we have
traversed the full search-space multiple times for each abstract pair. As such, this
justifies our use in this implementation for AAI of one-step learning rather than
incrementally updating the meta-policy. Should IMP be applied to larger search
spaces, incremental learning would be useful.



20 Ludovico Mitchener et al.

6.3 Applying DUA and IMP to new environments

We have proposed a general method for learning and enacting intelligent behaviour
in virtual RL environments. DUA contains the scaffolding to interface computer
vision, neural actors and symbolic reasoner in a closed loop while IMP symbolically
learns a high-level policy over options.

The framework may be applied to any typical RL environment. For each new
environment, one needs to decide what are the observables to be used in the ASP
representation, choose and train the options and finally implement a detector that
translates the input from the environment into observables. It is worth noting that
this framework works with any type of detector as this does not influence the shape
of the logic program. The core of our framework (learning a symbolic meta-policy)
adapts to any environment.

Training the set of options should require no or very little hyper-parameter
tuning as each option focuses on learning one skill. In the AAI case, training all
options was more than three orders of magnitude faster than other top submissions
based on DRL methods which additionally require a considerable amount of hyper-
parameter tuning. In this paper we only learn weak constraints that constitute our
meta-policy. However, the ILASP system used by our DUA architecture is capable
of learning any ASP program. For example, in this work we have encoded in the
ASP reasoner the default assumption that "if an object is visible, then it is also
present". Such assumptions could also be directly learned using ILASP. As such,
this initial framework opens up the opportunity of learning more complex symbolic
representations overlaid over deep neural enactors.

7 Conclusions & Future Work

In this paper we have presented a novel neuro-symbolic hierarchical reinforcement
learning approach that outperforms previous approaches on challenging physical
cognitive tasks. DUA acts effectively in continuous, noisy and high-density do-
mains while maintaining a simplified and goal-driven high-level representation of
the environment and its actions. It is capable of identifying objects, their proper-
ties and their relations, making consistent decisions on their relevance for solving
tasks and finally reporting these inferences in an interpretable manner. We further
present a novel algorithm, inductive meta-policy learning, capable of learning from
very few examples, which high-level actions to take, given a symbolic represen-
tation of the world in extremely sparsely rewarded environments. We discuss the
modular quality of our approach, which allows for straightforward generalisation
and transfer to further complex tasks.

We have provided evidence that neuro-symbolic approaches can help to solve
cognitive tasks. In the future, this can be improved by shifting away from hand-
crafted object detectors, allowing for more resilient and accurate object represen-
tations. Further systems would ideally learn what options are needed and find a
way to leverage intra-option dependencies. Although we used IMP for a single pol-
icy update, the system can also be used incrementally. This setup would benefit
tasks with larger search spaces of symbolic state-option pairs. Finally, the symbolic
dexterity afforded by ASP and ILASP can be further utilised to incorporate more
elaborate reasoning on the objects or even on the previous options chosen.



Detect, Understand, Act 21

8 Declarations

8.0.1 Funding

No funding was received to assist with the preparation of this manuscript.

8.0.2 Conflicts of interest/Competing interests

The authors have no relevant financial or non-financial interests to disclose.

8.0.3 Availability of data and material

The full Animal-AI environment as well as the 2019 competition testbed and
results is publicly available at http://animalaiolympics.com/AAI/ .

8.0.4 Code availability

The full code will not be made available. However, the sections relating to In-
ductive Meta-Policy Learning–our primary contribution–will be made available as
supporting material to the manuscript.

8.0.5 Authors’ contributions

All authors contributed to the study conception and design. Material preparation,
data collection, coding and analysis were performed by Ludovico Mitchener. The
first draft of the manuscript was written by Ludovico Mitchener and all authors
edited and commented on previous versions of the manuscript. All authors read
and approved the final manuscript.

References

Anderson, G., Verma, A., Dillig, I., & Chaudhuri, S. (2020). Neurosymbolic rein-
forcement learning with formally verified exploration.

Andreas, J., Klein, D., & Levine, S. (2017). Modular multitask reinforcement
learning with policy sketches. Proceedings of the34th International Confer-
ence on Machine Learning,.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., . . .
others (2019). Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 .

Booch, G., Fabiano, F., Horesh, L., Kate, K., Lenchner, J., Linck, N., . . . Srivas-
tava, B. (2020). Thinking fast and slow in ai.

Bougie, N., Kai Cheng, L., & Ichise, R. (2018). Combining Deep Reinforcement
Learning with Prior Knowledge and Reasoning. Retrieved from http://
dx.doi.org/10.1145/3167132.3167165 doi: 10.1145/3167132.3167165

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner,
T., . . . Schaub, T. (2019). Asp-core-2 input language format. CoRR,
abs/1911.04326 . Retrieved from http://arxiv.org/abs/1911.04326

http://dx.doi.org/10.1145/3167132.3167165
http://dx.doi.org/10.1145/3167132.3167165
http://arxiv.org/abs/1911.04326


22 Ludovico Mitchener et al.

Clark, K. (1987). Negation as failure. In Readings in nonmonotonic reasoning
(pp. 311–325).

Clark, P., Etzioni, O., Khashabi, D., Khot, T., Mishra, B. D., Richardson, K.,
. . . Schmitz, M. (2019, sep). From ’F’ to ’A’ on the N.Y. Regents Science
Exams: An Overview of the Aristo Project. arXiv . Retrieved from http://
arxiv.org/abs/1909.01958

Cranmer, M. D., Xu, R., Battaglia, P., & Ho, S. (2019, sep). Learning Symbolic
Physics with Graph Networks. arXiv . Retrieved from http://arxiv.org/
abs/1909.05862

Crosby, M., Beyret, B., & Halina, M. (2019). The Animal-AI Olympics. Nature
Machine Intelligence. doi: 10.1038/s42256-019-0050-3

Crosby, M., Beyret, B., Shanahan, M., Hernández-Orallo, J., Cheke, L., & Halina,
M. (2020). The animal-ai testbed and competition. In Neurips 2019 com-
petition and demonstration track (pp. 164–176).

Cunnington, D., Russo, A., Law, M., Lobo, J., & Kaplan, L. (2020). NSL: hybrid
interpretable learning from noisy raw data. Retrieved from https://arxiv
.org/abs/2012.05023

d’Avila Garcez, A., Gori, M., Lamb, L. C., Serafini, L., Spranger, M., & Tran,
S. N. (2019, may). Neural-Symbolic Computing: An Effective Methodology
for Principled Integration of Machine Learning and Reasoning. IfCoLoG
Journal of Logics and their Applications, 6 (4), 611–631. Retrieved from
http://arxiv.org/abs/1905.06088

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., & Zhou, D. (2019, apr). Neural Logic
Machines. 7th International Conference on Learning Representations, ICLR
2019 . Retrieved from http://arxiv.org/abs/1904.11694

Fawzi, A., Malinowski, M., Fawzi, H., & Fawzi, O. (2019, jun). Learning dy-
namic polynomial proofs. arXiv . Retrieved from http://arxiv.org/abs/
1906.01681

Furelos-Blanco, D., Law, M., Jonsson, A., Broda, K., & Russo, A. (2021). In-
duction and exploitation of subgoal automata for reinforcement learning. J.
Artif. Intell. Res., 70 , 1031–1116.

Garnelo, M., Arulkumaran, K., & Shanahan, M. (2016). Towards deep symbolic re-
inforcement learning. Retrieved from https://arxiv.org/abs/1609.05518

Garnelo, M., & Shanahan, M. (2019). Reconciling deep learning with sym-
bolic artificial intelligence: representing objects and relations. doi: 10.1016/
j.cobeha.2018.12.010

Gelfond, M., & Lifschitz, V. (2000, 12). The stable model semantics for logic
programming. Logic Programming , 2 .

Gupta, N., Lin, K., Roth, D., Singh, S., & Gardner, M. (2019, dec). Neural
Module Networks for Reasoning over Text. arXiv . Retrieved from http://
arxiv.org/abs/1912.04971

Han, C., Mao, J., Csail, M., Gan, C., Tenenbaum, J. B., Bcs, M., & Wu, J. (n.d.).
Visual Concept-Metaconcept Learning (Tech. Rep.). Retrieved from http://
vcml.csail.mit.edu.

Hart, P., & Knoll, A. (2020, jun). Graph Neural Networks and Reinforcement
Learning for Behavior Generation in Semantic Environments. arXiv . Re-
trieved from http://arxiv.org/abs/2006.12576

Hasanbeig, M., Jeppu, N. Y., Abate, A., Melham, T., & Kroening, D. (2019). Deep-
synth: Program synthesis for automatic task segmentation in deep reinforce-

http://arxiv.org/abs/1909.01958
http://arxiv.org/abs/1909.01958
http://arxiv.org/abs/1909.05862
http://arxiv.org/abs/1909.05862
https://arxiv.org/abs/2012.05023
https://arxiv.org/abs/2012.05023
http://arxiv.org/abs/1905.06088
http://arxiv.org/abs/1904.11694
http://arxiv.org/abs/1906.01681
http://arxiv.org/abs/1906.01681
https://arxiv.org/abs/1609.05518
http://arxiv.org/abs/1912.04971
http://arxiv.org/abs/1912.04971
http://vcml.csail.mit.edu.
http://vcml.csail.mit.edu.
http://arxiv.org/abs/2006.12576


Detect, Understand, Act 23

ment learning. CoRR, abs/1911.10244 . Retrieved from http://arxiv.org/
abs/1911.10244

Icarte, R. T., Klassen, T. Q., Valenzano, R., & McIlraith, S. A. (2018). Using
reward machines for high-level task specification and decomposition in rein-
forcement learning. In 35th international conference on machine learning,
icml 2018.

Jiang, J., Dun, C., Huang, T., & Lu, Z. (2018, oct). Graph Convolutional
Reinforcement Learning. arXiv . Retrieved from http://arxiv.org/abs/
1810.09202

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M., & Lange,
D. (2018). Unity: A general platform for intelligent agents. arXiv preprint
arXiv:1809.02627 .

Kahneman, D. (2011). Thinking, fast and slow. New York: Far-
rar, Straus and Giroux. Retrieved from https://www.amazon.de/
Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o
_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7

Kowalski, R., & Sergot, M. (1989). A logic-based calculus of events. In Foundations
of knowledge base management (pp. 23–55). Springer.

Law, M., Russo, A., & Broda, K. (2018). The complexity and generality of learning
answer set programs. Artif. Intell., 259 , 110–146.

Law, M., Russo, A., & Broda, K. (2020). The ilasp system for inductive learning
of answer set programs.

Liao, Q., & Poggio, T. (2017). Object-Oriented Deep Learning. Retrieved from
https://dspace.mit.edu/handle/1721.1/112103

Manhaeve, R., Leuven, K. U., Dumanči´, S., Ku Leuven, D., Kimmig, A., De-
meester, T., & De Raedt, L. (2018). DeepProbLog: Neural Probabilistic
Logic Programming (Tech. Rep.). Retrieved from https://bitbucket.org/
problog/deepproblog.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019). The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from
natural supervision. In 7th international conference on learning representa-
tions, iclr 2019.

Marcus, G. (2020). The Next Decade in AI: Four Steps Towards Robust Artificial
Intelligence. Retrieved from https://arxiv.org/abs/2002.06177

Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S., & Grefenstette, E. (2019,
dec). Differentiable Reasoning on Large Knowledge Bases and Natural Lan-
guage. arXiv . Retrieved from http://arxiv.org/abs/1912.10824

Nascimento, J. C., Abrantes, A. J., & Marques, J. S. (1999). Algorithm for
centroid-based tracking of moving objects. ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings, 6 ,
3305–3308. doi: 10.1109/icassp.1999.757548

Sadri, F., & Kowalski, R. A. (1995). Variants of the event calculus. In Iclp (pp.
67–81).

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,
. . . others (2020). Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 588 (7839), 604–609.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017, jul).
Proximal Policy Optimization Algorithms. Retrieved from http://arxiv
.org/abs/1707.06347

http://arxiv.org/abs/1911.10244
http://arxiv.org/abs/1911.10244
http://arxiv.org/abs/1810.09202
http://arxiv.org/abs/1810.09202
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://dspace.mit.edu/handle/1721.1/112103
https://bitbucket.org/problog/deepproblog.
https://bitbucket.org/problog/deepproblog.
https://arxiv.org/abs/2002.06177
http://arxiv.org/abs/1912.10824
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347


24

Shanahan, M., Nikiforou, K., Deepmind, A. C., Kaplanis, C., Deepmind, D. B., &
Deepmind, M. G. (2020). An explicitly relational neural network architecture.
Retrieved from https://arxiv.org/abs/1905.10307

Srivastava, S. (2011). Foundations and applications of generalized planning. AI
Communications, 24 (4), 349–351. doi: 10.3233/aic-2011-0508

Sun, S.-H., Wu, T.-L., & Lim, J. J. (2020). Program guided agent. Retrieved from
https://openreview.net/forum?id=BkxUvnEYDH

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112 , 181–211.

van den Bosch, A., Hengst, B., Lloyd, J., Miikkulainen, R., Blockeel, H., & Bloc-
keel, H. (2011). Hierarchical Reinforcement Learning. In Encyclopedia
of machine learning (pp. 495–502). Boston, MA: Springer US. Retrieved
from http://link.springer.com/10.1007/978-0-387-30164-8{_}363 doi:
10.1007/978-0-387-30164-8_363

Xu, Z., Gavran, I., Ahmad, Y., Majumdar, R., Neider, D., Topcu, U., & Wu,
B. (2020). Joint inference of reward machines and policies for reinforce-
ment learning. In Proceedings of the international conference on automated
planning and scheduling (Vol. 30, pp. 590–598).

Yang, Y., Inala, J. P., Bastani, O., Pu, Y., Solar-Lezama, A., & Rinard, M. (2021).
Program synthesis guided reinforcement learning.

Yi, K., Wu, J., Gan, C., Torralba, A., Deepmind, P. K., & Tenenbaum, J. B. (n.d.).
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language
Understanding (Tech. Rep.). Retrieved from http://nsvqa.csail.mit.edu

Zamani, M. A., Magg, S., Weber, C., & Wermter, S. (2017). Deep Reinforcement
Learning using Symbolic Representation for Performing Spoken Language
Instructions* (Tech. Rep.). Retrieved from https://code.facebook.com/
posts/181565595577955/introducing-

Zhang, Q., & Sornette, D. (2017, jul). Learning like humans with Deep Symbolic
Networks. Retrieved from http://arxiv.org/abs/1707.03377

Appendices
A Logic Programming

For an example of a full IMP ILASP learning task, see imp.lp. For an example
of the ASP program used for DUA at inference time see inference.lp. For an
example of the ASP program used to generate valid random options during imp
training see valid_options.lp.

B The Options

We trained 9 options for DUA based on the kind of actions that we expect to be
useful in the Animal-AI environment. These are Observe, Rotate, Drop(side), In-

https://arxiv.org/abs/1905.10307
https://openreview.net/forum?id=BkxUvnEYDH
http://link.springer.com/10.1007/978-0-387-30164-8{_}363
http://nsvqa.csail.mit.edu
https://code.facebook.com/posts/181565595577955/introducing-
https://code.facebook.com/posts/181565595577955/introducing-
http://arxiv.org/abs/1707.03377


25

teract(x), Explore(x,y), Collect, Avoid(x,y), Balance(x,y), and Climb(x,y). We will
go through each of them, describing their purpose, their inputs and how they were
trained. The first three are hard-coded, the rest are pre-trained PPO policies. All
DRL policies receive the agent’s 3D velocity vector as input (which is standard in
Animal-AI) in addition to those described below. All DRL policies received a small
negative reward of 0.05 for going backwards to disincentivise sub-optimal policies.
No hyperparameter tuning was necessary to achieve sufficient performance. We
used the ml-agents implementation of PPO (Juliani et al., 2018). All options were
trained with the following hyperparameters.

AnimalAI:
trainer: ppo
epsilon: 0.2
lambd: 0.95
learning_rate: 1e-4
learning_rate_schedule: linear
memory_size: 128
normalize: false
sequence_length: 64
summary_freq: 10000
use_recurrent: false
vis_encode_type: simple
time_horizon: 128
batch_size: 64
buffer_size: 2024
hidden_units: 256
num_layers: 1
beta: 1.0e-2
max_steps: 1.0e7
num_epoch: 3
reward_signals:

extrinsic:
strength: 1.0
gamma: 0.99

B.1 Observe

Inputs None.
Description The agent does not move, but keeps track of which direction objects
are moving in the environment. If a blackout happens during the observation, the
option will wait until the blackout is finished to return.
Training None.



26

B.2 Rotate

Inputs None.
Description Rotate clockwise until an object is seen.
Training None.

B.3 Drop

Inputs A boolean indicating left or right.
Description Move in a diagonal line left or right until the agent falls off the
platform (as monitored via the vertical velocity component).
Training None.

B.4 Interact

Inputs The bounding box of a single object.
Description Go touch an object.
Training The agent and a goal of varying sizes are placed at random in the arena.

B.5 Explore

Inputs The bounding box of a single object.
Description Go around an object clockwise or anti-clockwise.
Training The agent is always placed facing a wall of various dimensions and
multiple goals are behind the wall. However, the agent does not ‘see’ the goals at
all so it will learn the policy of wall-following until it bumps into the goal.

B.6 Collect

Inputs The masked image for orange goals.
Description Collect as many orange goals as possible in an efficient manner.
Training The agent is placed in an arena with a random number of randomly
sized orange goals.

B.7 Avoid

Inputs The full RGB image.
Description Avoid red objects while going to touch goal.
Training The training set is composed of many variants of the agent needing to
reach a green goal while avoiding red lava or red balls which give negative reward
and terminate the episode. The lava is placed in many different configurations to
resemble mazes that the agent has to navigate. The goal is always visible to the
agent.



27

B.8 Balance

Inputs The masked image for blue platforms and a single bounding box for the
goal.
Description Balance on platform without falling off to get to the goal.
Training The training set is composed of various variations of L or U shaped
platforms where the agent is on one side and the goal on the other. The floor is
all lava to terminate episodes as soon as the agent falls.

B.9 Climb

Inputs The masked image for pink ramps.
Description Climb up ramp.
Training The agent is placed in an arena with a single ramp of varying dimensions
with a goal at the top. The agent does not ‘see’ the goal as with the explore
training. The agent is given a positive reward proportional to its upwards velocity
to accelerate training.

C Detect Heuristics

To translate a list of bounding boxes into a logic program composed of objects
and their relations we employ a few simple heuristics described below.

On(x,y). X can be the agent or goal. Y can be any object in AAI. To determine
whether a goal is on top of an object y we take the bounding box the size of the
goal, mirror it downwards and check if its colour is other than that of the floor.
To check if the agent is on an object we take the bottom quartile of the agent’s
view and check if there is at least a 70% overlap with another bounding box in
the scene.

Danger. If the column beneath a goal’s bounding box intersects any red ob-
jects then there is said to be a danger in getting to the goal.

Adjacent. Two objects are adjacent if the shortest distance between their
bounding boxes is 0.

More_goals(side). To determine whether more goals are on the left or the
right we split the screen in two and count how many goal centroids are on each
side. If they end up being equal we select the side with the larger occlusion area.

D IMP Training Set

In this section we present the training set used to learn a general meta-policy to
solve the AAI testbed. The choice of arena for each category is defined by two
criteria:

– The arena teaches the high-level lesson necessary for a whole category. For
example, prefer bigger goals for y-mazes or choose sides with more goals for
numerosity.



28

Fig. 6: Agent observation at t=0 for each of the arenas from the training set. From left to
right, up to down the names are: Basic, Lava, Ramp, Preference, Count, Spatial Elimination,
Object Permanence.

Table 1: DUA’s performance on AAI categories of interest. Average ± s.d. over 10 runs.

Category Best Top 10 Average Ours

Basic Food and Obstacles 89 53 99±4
Moving Food 77 71 70±5

Unreachable Food 100 72 81±12
Multiple Food Stationary 77 47 20±11
Multiple Food Moving 55 28 23±13

Avoid Red 50 19 57±5
Ramp Usage 37 9 45±4
Hot zones 75 62 81±5

Generalisation and Adaptability 54 36 13±2
Internal Models 57 44 22±2

Y-Mazes 88 76 78±3
Delayed Gratification 53 34 46±5

Detour Tasks 33 12 10±2
Cylinder Tasks 77 48 19±5

Thorndike Escape Experiments 50 27 21±6
T-Maze 100 66 48±12

Spatial Elimination 26 17 48±5
Support and Gravity Bias 44 31 30±6

Radial Mazes 59 29 19±4
Object Permanence 25 9 29±3

Numerosity 50 43 64±3
Tool use 11 2 0±0

Overall 43.7 32.9 39.0±0.6

– The agent succeeds the episode every time it chooses the right sequence of
options. In other words, ensure that the arenas are easy enough that the DRL
options reliably succeed when chosen in the appropriately. Otherwise this will
lead to unnecessary noise in the learning task.

Basic In this arena the agent a goal and a wall are randomly placed in the
arena. The agent must learn how to explore effectively and navigate to goals when
visible. Macro-steps are limited to 3. Category: Basic Food and Obstacles.



29

Lava In this arena lava is placed between the agent and the visible goal. The
agent must learn to avoid lava to reach the goal. Macro-steps are limited to 1.
Category: Avoid Red.

Ramp This arena contains a ramp, an L-shaped platform and a goal above
the platform. The agent must first climb the ramp, then balance on the platform
to reach the goal. Macro-steps are limited to 2. Category: Ramp Usage.

Preference This arena contains a ramp, an L-shaped platform and a goal
above the platform. The agent must first climb the ramp, then balance on the
platform to reach the goal. Macro-steps are limited to 2. Category: Y-Mazes.

Count There are two goals on the left and one on the right. The agent must
first learn to drop on the left side and collect the multi goals. Macro-steps are
limited to 2. Category: Numerosity.

Spatial Elimination The agent has a forced choice between two occluding
objects likely to hide the goal. The agent must learn to preferentially explore
objects most likely to occlude the goal. Macro-steps are limited to 2. Category:
Spatial Elimination.

Object Permanence The episode starts with the goal moving towards the
back of the arena and then there is a blackout following which the goal is hidden
behind the occluding object. The agent must learn to wait for the blackout and
understand that the goal has not vanished, but must be behind the one occluding
object. Macro-steps are limited to 3. Category: Object Permanence.


	Introduction
	Background
	Related Work
	DUA
	Experimental Setup
	Results
	Conclusions & Future Work
	Declarations
	References
	Appendices
	Logic Programming
	The Options
	Detect Heuristics
	IMP Training Set

