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Abstract. Neural link predictors are immensely useful for identifying
missing edges in large scale Knowledge Graphs. However, it is still not
clear how to use these models for answering more complex queries that
arise in a number of domains, such as queries using logical conjunctions
(∧), disjunctions (∨) and existential quantifiers (∃), while accounting
for missing edges. In this work, we propose a framework for efficiently
answering complex queries on incomplete Knowledge Graphs. We trans-
late each query into an end-to-end differentiable objective, where the
truth value of each atom is computed by a pre-trained neural link pre-
dictor. We then analyse two solutions to the optimisation problem, in-
cluding gradient-based and combinatorial search. In our experiments, the
proposed approach produces more accurate results than state-of-the-art
methods — black-box neural models trained on millions of generated
queries — without the need for training on a large and diverse set of
complex queries. Using orders of magnitude less training data, we ob-
tain relative improvements ranging from 8% up to 40% in Hits@3 across
different Knowledge Graphs containing factual information. Finally, we
demonstrate that it is possible to explain the outcome of our model in
terms of the intermediate solutions identified for each of the complex
query atoms. All our source code and datasets are available online. 5

This is an extension of Arakelyan et al. (2021), published in the proceed-
ings of the 9th International Conference on Learning Representations
(ICLR 2021), where it was awarded an Outstanding Paper Award. 6

1 Introduction

Knowledge Graphs (KGs) are graph-structured knowledge bases, where knowl-
edge about the world is stored in the form of relationship between entities.

? Equal contribution.
5 At https://github.com/uclnlp/cqd
6 More on the ICLR 2021 Outstanding Paper Awards is available at this link.

https://github.com/uclnlp/cqd
https://iclr-conf.medium.com/announcing-iclr-2021-outstanding-paper-awards-9ae0514734ab
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?D : ∃P . interacts(D, P) ∧ [assoc(P, t1) ∨ assoc(P, t2)]

D P
interacts t₁ t₂assoc

?D : ∃A .directs(D, A) ∧ [prize(A,Oscar) ∨ prize(A,Emmy)]

D A
directs Oscar Emmyprize

“Which drugs interact with proteins 
associated with diseases t₁ or t₂?” 

“Which directors directed actors that 
won either an Oscar or an Emmy?” 

Fig. 1: Examples of First-Order Logical Queries using existential quantification
(∃), conjunction (∧), and disjunction (∨) operators — their dependency graphs
are D ← P ← {t1, t2}, and D ← A← {Oscar,Emmty}, respectively.

KGs are an extremely flexible and versatile knowledge representation formalism
– examples include general purpose knowledge bases such as DBpedia (Auer
et al., 2007) and YAGO (Suchanek et al., 2007), domain-specific ones such as
Bio2RDF (Dumontier et al., 2014) and Hetionet (Himmelstein et al., 2017)
for life sciences and WordNet (Miller, 1992) for linguistics, and application-
driven graphs such as the Google Knowledge Graph, Microsoft’s Bing Knowledge
Graph, and Facebook’s Social Graph (Noy et al., 2019).

Neural link predictors (Nickel et al., 2016) tackle the problem of identifying
missing edges in large KGs. However, in many complex domains, an open chal-
lenge is developing techniques for answering complex queries involving multiple
and potentially unobserved edges, entities, and variables, rather than just single
edges.

We focus on First-Order Logical Queries that use conjunctions (∧), dis-
junctions (∨), and existential quantifiers (∃). A multitude of queries can be
expressed by using such operators – for instance, the query “Which drugs D
interact with proteins associated with diseases t1 or t2?” can be rewritten as
?D : ∃P.interacts(D,P ) ∧ [assoc(P, t1) ∨ assoc(P, t2)], which can be answered
via sub-graph matching.

However, plain sub-graph matching cannot capture semantic similarities be-
tween entities and relations, and cannot deal with missing facts in the KG. One
possible solution consists in computing all missing entries via KG completion
methods (Getoor and Taskar, 2007; De Raedt, 2008; Nickel et al., 2016), but
that would materialise a significantly denser KG and would have intractable
space and time complexity requirements (Krompaß et al., 2014).

In this work, we propose a framework for answering First-Order Logic Queries,
where the query is compiled in an end-to-end differentiable function, modelling
the interactions between its atoms. The truth value of each atom is computed by
a neural link predictor (Nickel et al., 2016) – a differentiable model that, given
an atomic query, returns the likelihood that the fact it represents holds true. We
then propose two approaches for identifying the most likely values for the vari-
able nodes in a query – either by continuous or by combinatorial optimisation.

Recent work on embedding logical queries on KGs (Hamilton et al., 2018;
Daza and Cochez, 2020; Ren et al., 2020) has suggested that in order to go
beyond link prediction, more elaborate architectures, and a large and diverse
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dataset with millions of queries is required. In this work, we show that this is
not the case, and demonstrate that it is possible to use an efficient neural link
predictor trained for 1-hop query answering, to generalise to up to 8 complex
query structures. By doing so, we produce more accurate results than state-of-
the-art models, while using orders of magnitude less training data.

Summarising, in comparison with other approaches in the literature such as
Query2Box (Ren et al., 2020), we find that the proposed framework i) achieves
significantly better or equivalent predictive accuracy on a wide range of complex
queries, ii) is capable of out-of-distribution generalisation, since it is trained on
simple queries only and evaluated on complex queries, and iii) is more explain-
able, since the intermediate results for its sub-queries and variable assignments
can be used to explain any given answer.

2 Existential Positive First-Order Logical Queries

A Knowledge Graph G ⊆ E ×R×E can be defined as a set of subject-predicate-
object 〈s, p, o〉 triples, where each triple encodes a relationship of type p ∈ R
between the subject s ∈ E and the object o ∈ E of the triple, where E and
R denote the set of all entities and relation types, respectively. One can think
of a Knowledge Graph as a labelled multi-graph, where entities E represent
nodes, and edges are labelled with relation types R. Without loss of generality,
a Knowledge Graph can be represented as a First-Order Logic Knowledge Base,
where each triple 〈s, p, o〉 denotes an atomic formula p(s, o), with p ∈ R a binary
predicate and s, o ∈ E its arguments.

Conjunctive queries are a sub-class of First-Order Logical queries that use
existential quantification (∃) and conjunction (∧) operations. We consider con-
junctive queries Q in the following form:

Q[A] ,?A : ∃V1, . . . , Vm.e1 ∧ . . . ∧ en (1)

where ei = p(c, V ), with V ∈ {A, V1, . . . , Vm}, c ∈ E , p ∈ R
or ei = p(V, V ′), with V, V ′ ∈ {A, V1, . . . , Vm}, V 6= V ′, p ∈ R.

In Eq. (1), the variable A is the target of the query, V1, . . . , Vm denote the
bound variable nodes, while c ∈ E represent the input anchor nodes. Each ei
denotes a logical atom, with either one (p(c, V )) or two variables (p(V, V ′)), and
e1 ∧ . . . ∧ en denotes a conjunction between n atoms.

The goal of answering the logical query Q consists in finding a set of entities
JQK ⊆ E such that a ∈ JQK iff Q[a] holds true, where JQK is the answer set of
the query Q.

As illustrated in Fig. 1, the dependency graph of a conjunctive query Q is a
graph representation of Q where nodes correspond to variable or non-variable
atom arguments inQ and edges correspond to atom predicates. We follow Hamil-
ton et al. (2018) and focus on valid conjunctive queries – i.e. the dependency
graph needs to be a directed acyclic graph, where anchor entities correspond to
source nodes, and the query target A is the unique sink node.
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Example 1 (Conjunctive Query). Consider the query “Which drugs interact
with proteins associated with the disease t?”. This query can be formalised as
a conjunctive query Q such as ?D : ∃P.interacts(D,P ) ∧ assoc(P, t), where t is
an input anchor node, the variable D is the target of the query, P is a bound
variable node, and the dependency graph is D ← P ← t. The answer set JQK of
Q corresponds to the set of all drugs in E interacting with proteins associated
with t. �

Handling Disjunctions So far we focused on conjunctive queries defined using
the existential quantification (∃) and conjunction (∧) logical operators. Our aim
is answering a wider class of logical queries, namely Existential Positive First-
Order (EPFO) queries (Dalvi and Suciu, 2004) that in addition to existential
quantification and conjunction, also involve disjunction (∨). We follow Ren et al.
(2020) and, without loss of generality, we transform a given EPFO query into
Disjunctive Normal Form (DNF, Davey and Priestley, 2002), i.e. a disjunction
of conjunctive queries.

Example 2 (Disjunctive Normal Form). Consider the following variant of query
in Example 1: “Which drugs interact with proteins associated with the dis-
eases t1 or t2?”. This query can be formalised as a EPFO query Q such as
?D : ∃P.interacts(D,P ) ∧ [assoc(P, t1) ∨ assoc(P, t2)]. We can transform Q in
the following, equivalent DNF query: ?D : ∃P. [interacts(D,P ) ∧ assoc(P, t1)] ∨
[interacts(D,P ) ∧ assoc(P, t2)]. �

In our framework, given a DNF query Q, for each of its conjunctive sub-queries
we produce a score for all the entities representing the likelihood that they
answer that sub-query. Finally, such scores are aggregated using a t-conorm —
a continuous relaxation of the logical disjunction.

3 Complex Query Answering via Optimisation

We propose a framework for answering EPFO logical queries in the presence of
missing edges. Given a query Q, we define the score of a target node a ∈ E as a
candidate answer for a query as a function of the score of all atomic queries in
Q, given a variable-to-entity substitution for all variables in Q.

Each variable is mapped to an embedding vector, that can either correspond
to an entity c ∈ E or to a virtual entity. The score of each of the query atoms is
determined individually using a neural link predictor (Nickel et al., 2016). Then,
the score of the query with respect to a given candidate answer Q[a] is com-
puted by aggregating all atom scores using t-norms and t-conorms – continuous
relaxations of the logical conjunction and disjunction operators.

Neural Link Prediction A neural link predictor is a differentiable model where
atom arguments are first mapped into a k-dimensional embedding space, and
then used for producing a score for the atom. More formally, given a query atom
p(s, o), where p ∈ R and s, o ∈ E , the score for p(s, o) is computed as φp(es, eo),
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where es, eo ∈ Rk are the embedding vectors of s and o, and φp : Rk×Rk 7→ [0, 1]
is a scoring function computing the likelihood that entities s and o are related
by the relationship p.

In our experiments, as neural link predictor, we use ComplEx (Trouillon
et al., 2016) regularised using a variational approximation of the tensor nuclear
p-norm proposed by Lacroix et al. (2018).

T-Norms A t-norm > : [0, 1] × [0, 1] 7→ [0, 1] is a generalisation of conjunc-
tion in logic (Klement et al., 2000, 2004). Some examples include the Gödel
t-norm >min(x, y) = min{x, y}, the product t-norm >prod(x, y) = x · y, and the
 Lukasiewicz t-norm >Luk(x, y) = max{0, x + y − 1}. Analogously, t-conorms
are dual to t-norms for disjunctions – given a t-norm >, the complementary
t-conorm is defined by ⊥(x, y) = 1−>(1− x, 1− y).

Continuous Reformulation of Complex Queries Let Q denote the following DNF
query:

Q[A] ,?A : ∃V1, . . . , Vm.
(
e11 ∧ . . . ∧ e1n1

)
∨ .. ∨

(
ed1 ∧ . . . ∧ ednd

)
(2)

where eji = p(c, V ), with V ∈ {A, V1, . . . , Vm}, c ∈ E , p ∈ R
or eji = p(V, V ′), with V, V ′ ∈ {A, V1, . . . , Vm}, V 6= V ′, p ∈ R.

We want to know the variable assignments that render Q true. To achieve this.
we can cast this as an optimisation problem, where the aim is finding a mapping
from variables to entities that maximises the score of Q:

arg max
A,V1,...,Vm∈E

(
e11 > . . . > e1n1

)
⊥ .. ⊥

(
ed1 > . . . > ednd

)
(3)

where eji = φp(ec, eV ), with V ∈ {A, V1, . . . , Vm}, c ∈ E , p ∈ R
or eji = φp(eV , eV ′), with V, V ′ ∈ {A, V1, . . . , Vm}, V 6= V ′, p ∈ R,

where > and ⊥ denote a t-norm and a t-conorm – a continuous generalisation
of the logical conjunction and disjunction, respectively – and φp(es, eo) ∈ [0, 1]
denotes the neural link prediction score for the atom p(s, o). We write t-norms
and t-conorms as infix operators since they are both associative.

Note that, in Eq. (3), the bound variable nodes V1, . . . , Vm are only used
through their embedding vector: to compute φp(ec, eV ) we only use the embed-
ding representation eV ∈ Rk of V , and do not need to know which entity the
variable V corresponds to. This means that we have two possible strategies for
finding the optimal variable embeddings eV ∈ Rk with V ∈ {A, V1, . . . , Vm} for
maximising the objective in Eq. (3), namely continuous optimisation, where we
optimise eV using gradient-based optimisation, and combinatorial optimisation,
where we search for the optimal variable-to-entity assignment.

3.1 Complex Query Answering via Continuous Optimisation

One way we can solve the optimisation problem in Eq. (3) is by finding the
variable embeddings that maximise the score of a complex query. This can be
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formalised as the following continuous optimisation problem:

arg max
eA,eV1

,...,eVm∈Rk

(
e11 > . . . > e1n1

)
⊥ .. ⊥

(
ed1 > . . . > ednd

)
(4)

where eji = φp(ec, eV ), with V ∈ {A, V1, . . . , Vm}, c ∈ E , p ∈ R
or eji = φp(eV , eV ′), with V, V ′ ∈ {A, V1, . . . , Vm}, V 6= V ′, p ∈ R.

In Eq. (4) we directly optimise the embedding representations eA, eV1 , . . . , eVm ∈
Rk of variables A, V1, . . . , Vm, rather than exploring the combinatorial space of
variable-to-entity mappings. In this way, we can tackle the maximisation problem
in Eq. (4) using gradient-based optimisation methods, such as Adam (Kingma
and Ba, 2015). Then, after we identified the optimal representation for variables
A, V1, . . . , Vm, we replace the query target embedding eA with the embedding
representations ec ∈ Rk of all entities c ∈ E , and use the resulting complex query
score to compute the likelihood that such entities answer the query.

3.2 Complex Query Answering via Combinatorial Optimisation

Another way we tackle the optimisation problem in Eq. (3) is by greedily search-
ing for a set of variable substitutions S = {A← a, V1 ← v1, . . . , Vm ← vm}, with
a, v1, . . . , vm ∈ E , that maximises the complex query score, in a procedure akin
to beam search. We do so by traversing the dependency graph of a query Q and,
whenever we find an atom in the form p(c, V ), where p ∈ R, c is either an entity
or a variable for which we already have a substitution, and V is a variable for
which we do not have a substitution yet, we replace V with all entities in E and
retain the top-k entities t ∈ E that maximise φp(ec, et) – i.e. the most likely
entities to appear as a substitution of V according to the neural link predictor.

Our procedure is akin to beam search: as we traverse the dependency graph of
a query, we keep a beam with the most promising variable-to-entity substitutions
identified so far.

Example 3 (Combinatorial Optimisation). Consider the query “Which drugs D
interact with proteins associated with disease t?” can be rewritten as: ?D :
∃P.interacts(D,P )∧ assoc(P, t). In order to answer this query via combinatorial
optimisation, we first find the top-k proteins p that are most likely to substitute
the variable P in assoc(P, t). Then, we search for the top-k drugs d that are most
likely to substitute D in interacts(D,P ), ending up with at most k2 candidate
drugs. Finally, we rank the candidate drugs d by using the query score produced
by the t-norm. �

Note that scoring all possible entities can be done efficiently and in a single step
on a GPU by replacing V with the entity embedding matrix. In our experiments
we did not notice any computational bottlenecks due to the branching factors
of longer queries. However, that could be handled by using alternate graph ex-
ploration strategies.
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4 Related Work

This work is closely related to approaches for learning to traverse Knowledge
Graphs (Guu et al., 2015; Das et al., 2017, 2018), and more recent works on
answering conjunctive queries via black-box neural models trained on generated
queries (Hamilton et al., 2018; Daza and Cochez, 2020; Kotnis et al., 2020).
The main difference is that we propose a tractable framework for handling a
substantially larger subset of First-Order Logic queries.

More recently, Ren et al. (2020) proposed Query2Box, a neural model for
Existential Positive First-Order logical queries, where queries are represented via
box embeddings (Li et al., 2019). Such approaches for query answering require
a dataset with millions of generated queries to generalise well – for instance, on
the FB15k-237 dataset, approx. 15×104 training queries for each query type are
used, resulting in approx. 1.2×106 training queries. Our framework, on the other
hand, only uses a simple, state-of-the-art neural link predictor (Lacroix et al.,
2018) trained on a set of 1-hop queries that is orders of magnitude smaller.

There is a large body of work on neural link predictors, that learn embed-
dings of entities and relations in KGs via a simple link prediction training objec-
tive (Bordes et al., 2013; Yang et al., 2015; Trouillon et al., 2016; Lacroix et al.,
2018). Due to their design, they are often evaluated for answering 1-hop queries
only, as their application to more complex queries does not derive directly from
their formulation.

Previous work has considered using such embeddings for complex query an-
swering, by partitioning the query graph and using an ad-hoc aggregation func-
tion to score candidate answers (Wang et al., 2018), or by using a probabilistic
mixture model similar to DistMult (Friedman and den Broeck, 2020). In contrast,
our proposed method answers a query by using a single pass where aggregation
steps are implemented with t-norms and t-conorms, which are continuous re-
laxations of conjunctions and disjunctions. Such t-norms have been proposed as
differentiable formulations of logical operators suitable for gradient-based learn-
ing (Serafini and d’Avila Garcez, 2016; Guo et al., 2016; Minervini et al., 2017;
van Krieken et al., 2020).

Further alternatives for using embeddings from neural link predictors, such as
combinatorial optimisation, have been ruled out as unfeasible (Hamilton et al.,
2018; Daza and Cochez, 2020). We show that this approach can scale well by
reducing the set of possible intermediate answers, while outperforming the state-
of-the-art in query answering.

The framework proposed in this paper is related to neural theorem provers
(Rocktäschel and Riedel, 2017; Weber et al., 2019; Minervini et al., 2020a,b),
a differentiable relaxation of the backward-chaining reasoning algorithm where
comparison between symbols is replaced by a differentiable similarity function
between their embedding vectors. During the reasoning process, neural theorem
provers check which rules can be used for proving a given atomic query. Then it
is checked whether the premise of such rules is satisfied, where the premise is a
conjunctive query. The procedure they use for answering conjunctions is akin to
the combinatorial optimisation procedure we propose in Section 3.2. The main
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source of difference is how atomic queries are answered – we use the ComplEx
neural link predictor (Trouillon et al., 2016), while neural theorem provers use
the maximum similarity value between a given atomic query and all facts in the
Knowledge Graph, which has linear complexity in the number of triples in the
graph.

5 Experiments

We described a method to answer a query by decomposing it into a continuous
formulation, which we refer to as Continuous Query Decomposition (CQD). In
this section we demonstrate the effectiveness of CQD on the task of answering
complex queries that cannot be answered using the incomplete KG, and report
experimental results for continuous optimisation (CQD-CO, Section 3.1) and
beam search (CQD-Beam, Section 3.2). We also provide a qualitative analysis of
how our method can be used to obtain explanations for a given complex query
answer. For the sake of comparison, we use the same datasets and evaluation
metrics as Ren et al. (2020).

5.1 Datasets

Following Ren et al. (2020), we evaluate our approach on FB15k (Bordes et al.,
2013) and FB15k-237 (Toutanova and Chen, 2015) – two subset of the Freebase
knowledge graph – and NELL995 (Xiong et al., 2017), a KG generated by the
NELL system (Mitchell et al., 2015). In order to compare with previous work on
query answering, we use the queries generated by Ren et al. (2020) from these
datasets. Dataset statistics are detailed in Table 1. We consider a total of 9 query
types, including atomic queries, and 2 query types that contain disjunctions –
the different query types are shown in Fig. 2. Note that in our framework, the
neural link predictor is only trained on atomic queries, while the evaluation is
carried out on the complete set of query types in Fig. 2.

Note that each query in Table 1 can have multiple answers, therefore the
total number of training instances can be higher. For atomic queries (of type
1p), this number is equal to the number of edges in the training graph. Other
methods like GQE (Hamilton et al., 2018) and Q2B (Ren et al., 2020) require
a dataset with more query types. As an example, the FB15k dataset contains
approximately 960k instances for 1p queries. When adding 2p, 3p, 2i, and 3i
queries employed by GQE and Q2B during training, this number increases to 65
million instances.

5.2 Model details

To obtain embeddings for the query answering task, we use ComplEx (Trouillon
et al., 2016) a variational approximation of the nuclear tensor p-norm for regu-
larisation (Lacroix et al., 2018). We fix a learning rate of 0.1 and use the Adagrad
optimiser. We then tune the hyperparameters of ComplEx on the validation set
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Fig. 2: Query structures considered in our experiments, as proposed by Ren
et al. (2020) – the naming of each query structure corresponds to projection
(p), intersection (i), and union (u), and reflects how they were implemented
in the Query2Box model (Ren et al., 2020). An example of a pi query is
?T : ∃V.p(a, V ), q(V, T ), r(b, T ), where a and b are anchor nodes, V is a vari-
able node, and T is the query target node.

Table 1: Number of queries in the datasets provided by Ren et al. (2020) for
evaluation of query answering performance: 1p indicates atomic queries, while
others indicates the number of queries for each of the remaining types.

Training Validation Test

Dataset 1p Others 1p Others 1p Others

FB15k 273,710 273,710 59,097 8,000 67,016 8,000
FB15k-237 149,689 149,689 20,101 5,000 22,812 5,000
NELL995 107,982 107,982 16,927 4,000 17,034 4,000

for each dataset, via grid search. We consider ranks (size of the embedding) in
{100, 200, 500, 1000}, batch size in {100, 500, 1000}, and regularisation coeffi-
cients in the interval

[
10−4, 0.5

]
.

For query answering we experimented with the Gödel and product t-norms
– we select the best t-norm for each query type according to the best validation
accuracy. For CQD-CO, we optimise variable and target embeddings with Adam,
using the same initialisation scheme as Lacroix et al. (2018), with an initial
learning rate of 0.1 and a maximum of 1,000 iterations. In practice, we observed
that the procedure usually converges in less than 300 iterations. For CQD-Beam,
the beam size k ∈ {22, 23, . . . , 28} is found on an held-out validation set.

5.3 Evaluation

As in Ren et al. (2020), for each test query, we assign a score to every entity in
the graph, and use such score for ranking such entities. We then compute the
Hits at 3 (H@3) metric, which measures the frequency with which the correct
answer is contained in the top three answers in the ranking. Since a query can
have multiple answers, we use the filtered setting (Bordes et al., 2013), where we
filter out other correct answers from the ranking before calculating the H@3.
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Table 2: Complex query answering results (H@3) across all query types in the
datasets from Ren et al. (2020); results for GQE (Hamilton et al., 2018) and
Query2Box (Ren et al., 2020) are from Ren et al. (2020).

Method Avg 1p 2p 3p 2i 3i ip pi 2u up

FB15k

GQE 0.384 0.630 0.346 0.250 0.515 0.611 0.153 0.320 0.362 0.271
Query2Box 0.484 0.786 0.413 0.303 0.593 0.712 0.211 0.397 0.608 0.330
CQD-CO 0.576 0.918 0.454 0.191 0.796 0.837 0.336 0.513 0.816 0.319
CQD-Beam 0.680 0.918 0.779 0.577 0.796 0.837 0.375 0.658 0.839 0.345

FB15k-237

GQE 0.230 0.405 0.213 0.153 0.298 0.411 0.085 0.182 0.167 0.160
Query2Box 0.268 0.467 0.240 0.186 0.324 0.453 0.108 0.205 0.239 0.193
CQD-CO 0.272 0.512 0.213 0.131 0.352 0.457 0.146 0.222 0.281 0.132
CQD-Beam 0.290 0.512 0.288 0.221 0.352 0.457 0.129 0.249 0.284 0.121

NELL995

GQE 0.248 0.417 0.231 0.203 0.318 0.454 0.081 0.188 0.200 0.139
Query2Box 0.306 0.555 0.266 0.233 0.343 0.480 0.132 0.212 0.369 0.163
CQD-CO 0.368 0.667 0.265 0.220 0.410 0.529 0.196 0.302 0.531 0.194
CQD-Beam 0.375 0.667 0.350 0.288 0.410 0.529 0.171 0.277 0.531 0.156

As baselines we use two recent state-of-the-art models for complex query
answering, namely Graph Query Embedding (GQE, Hamilton et al., 2018) and
Query2Box (Q2B, Ren et al., 2020).

5.4 Results

We detail the results of H@3 for all different query types in Table 2. We observe
that, on average, CQD produces more accurate results than GQE and Q2B,
while using orders of magnitude less training data. In particular, combinatorial
optimisation in CQD-Beam outperforms the baselines across all datasets.

The results for chained queries (2p and 3p) show that CQD-Beam is effective,
even when increasing the length of the chain. The most difficult case corresponds
to 3p queries, where the number of candidate variable substitutions increases due
to the branching factor of the search procedure.

We also note that having more variables does not always translate into worse
performance for CQD-CO: it yields the best ranking scores for ip queries on
FB15k-237, and for ip and pi queries for NELL995, and both such query types
contain two variables.

The results presented in Table 2 were obtained with a rank of 1,000, as they
produced the best performance in the validation set. We present results for other
values of the rank in Appendix A, where we observe that even with a rank of
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?G : ∃M .perform(ML, M) ∧ genre(M, G)

ML M
perform

G
genre

“In what genres of movies did Martin 
Lawrence appear?” 

?O : ∃C .nationality(TA, C) ∧ member(C, O)

TA C
nationality

O
member

“What international organisations contain the 
country of nationality of Thomas Aquinas?” 

Query: ?G : ∃M.perform(ML,M) ∧ genre(M,G)

M G Rank Correctness

Do the Right Thing
Drama 1 3

Comedy 4 3

Crime Fiction 7 3

National Security
Action 2 3

Thriller 3 3

Crime Fiction 5 3

The Nutty Professor
Comedy 6 3

Romantic Com. 8 7

Romance Film 9 7

Query: ?O : ∃C.nationality(TA, C) ∧ memberOf(C,O)

C O Rank Correctness

United States
NATO 1 3

OECD 2 3

EU 9 3

United Kingdom
NATO 3 3

OECD 4 3

EU 5 3

Germany
OECD 6 3

EU 7 3

WTO 8 3

Fig. 3: Intermediate variable assignments and ranks for two example queries,
obtained with CQD-Beam. Correctness indicates whether the answer belongs to
the ground-truth set of answers.

100, CQD still outperforms baselines with a larger embedding size. Furthermore,
in Appendix B, we report the number of seconds required to answer each query
type, showing that CQD-Beam requires less than 50ms for all considered queries.

We also experimented with a variant of CQD-Beam that uses DistMult (Yang
et al., 2015) as the link predictor – results are reported in Appendix C. As
expected, results when using DistMult are slightly less accurate than when using
ComplEx, while still being more accurate than those produced by GQE and Q2B.

5.5 Explaining Answers to Complex Queries

A useful property of our framework is its transparency when computing scores for
distinct atoms in a query. Unlike GQE and Q2B – two neural models that encode
a query into a vector via a set of non-linear transformations – our framework
is able to produce an explanation for a given answer in terms of intermediate
variable assignments.

Consider the following test query from the FB15k-237 knowledge graph: “In
what genres of movies did Martin Lawrence appear?” This query can be for-
malised as ?G : ∃M.perform(ML,M) ∧ genre(M,G), where ML is an anchor
node representing Martin Lawrence. The ground truth answers to this query are
7 genres, including Drama, Comedy, and Crime Fiction. In Fig. 3 we show the
intermediate assignments obtained when using CQD-Beam, to the variable M in
the query, and the rank for each combination of movie M and genre G. We note
that the assignments to the variable M are correct, as these are movies where
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Table 3: Complex query answering results (MRR) across all query types in the
datasets from Ren and Leskovec (2020); results for GQE (Hamilton et al., 2018),
Query2Box (Ren et al., 2020), and BetaE (Ren and Leskovec, 2020) are from
Ren and Leskovec (2020).

Method Avg 1p 2p 3p 2i 3i pi ip 2u up

FB15k

BetaE 0.416 0.651 0.257 0.247 0.558 0.665 0.439 0.281 0.401 0.252
Query2Box 0.380 0.680 0.210 0.142 0.551 0.665 0.394 0.261 0.351 0.167
GQE 0.280 0.546 0.153 0.108 0.397 0.514 0.276 0.191 0.221 0.116
CQD-CO 0.469 0.892 0.256 0.136 0.774 0.783 0.442 0.332 0.417 0.221
CQD-Beam 0.684 0.892 0.653 0.297 0.771 0.806 0.706 0.716 0.723 0.594

FB15k-237

BetaE 0.209 0.390 0.109 0.100 0.288 0.425 0.224 0.126 0.124 0.097
Query2Box 0.201 0.406 0.094 0.068 0.295 0.423 0.212 0.126 0.113 0.076
GQE 0.163 0.350 0.072 0.053 0.233 0.346 0.165 0.107 0.082 0.057
CQD-CO 0.219 0.467 0.096 0.062 0.312 0.406 0.236 0.160 0.145 0.082
CQD-Beam 0.253 0.467 0.133 0.079 0.349 0.486 0.271 0.204 0.176 0.115

NELL995

BetaE 0.246 0.530 0.130 0.114 0.376 0.475 0.241 0.143 0.122 0.086
Query2Box 0.229 0.422 0.140 0.112 0.333 0.445 0.224 0.168 0.113 0.103
GQE 0.186 0.328 0.119 0.096 0.275 0.352 0.184 0.144 0.085 0.088
CQD-CO 0.288 0.604 0.178 0.128 0.393 0.466 0.301 0.221 0.173 0.132
CQD-Beam 0.318 0.604 0.226 0.136 0.436 0.530 0.312 0.256 0.199 0.167

Martin Lawrence appeared. Furthermore, these intermediate assignments lead
to correct answers in the first seven positions of the ranking, which correctly
belong to the ground-truth set of answers.

In a second example, consider the following query: “What international or-
ganisations contain the country of nationality of Thomas Aquinas?” Its conjunc-
tive form is ?O : ∃C.nationality(TA, C) ∧memberOf(C,O), where TA is an an-
chor node representing Thomas Aquinas. The ground-truth answers to this query
are the Organisation for Economic Co-operation and Development (OECD), the
European Union (EU), the North Atlantic Treaty Organisation (NATO), and
the World Trade Organisation (WTO). As shown in Fig. 3, CQD-Beam yields
the correct answers in the first four positions in the rank. However, by inspecting
the intermediate assignments, we note that such correct answers are produced
by an incorrect (although related) intermediate assignment, since the country
of nationality of Thomas Aquinas is Italy. By inspecting these decisions we can
thus identify failure modes of our framework, even when it produces seemingly
correct answers. This is in contrast with other neural black-box models for query
answering outlined in Section 4, where such an analysis is not possible.
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5.6 Results on More Realistic Queries

In Ren and Leskovec (2020) authors notice that, in the datasets proposed by Ren
et al. (2020), some test queries may have more than 5,000 answers. To make the
task more challenging, they regenerate the same number of validation and test
queries for each of the 9 query structures, keeping only those with a number of
answer smaller than a threshold. More details on these new query datasets are
available in Ren and Leskovec (2020).

We integrated our method in KGReasoning,7 a library implementing GQE,
Query2Box, and BetaE (Ren and Leskovec, 2020), and used it to evaluate CQD
on the datasets provided by Ren and Leskovec (2020). In our implementation, we
vary k ∈ {20, 21, . . . , 210}, and consider the following way of normalising scores
produced by the neural link predictor φp(e, · ), namely i) a sigmoid function of
each of the resulting scores, ii) a softmax over all produced scores, and iii) min-
max normalisation. The best normalisation method was selected according to
results on the validation set.

Results, where predictive accuracy is measured via the Mean Reciprocal Rank
(MRR) of true answers over all candidates, are available in Table 3. We can see
that CQD produces more accurate results than BetaE, Query2Box, and GQE,
with the only exception of 3p queries on FB15k-237. It is worth reminding that
BetaE, as well as Query2Box and GQE, were trained on millions of generated
queries, while CQD was not.

6 Conclusions

We proposed a framework — Complex Query Decomposition (CQD) — for an-
swering Existential Positive First-Order logical queries by reasoning over sets of
entities in embedding space. In our framework, answering a complex query is re-
duced to answering each of its sub-queries, and aggregating the resulting scores
via t-norms. The benefit of the method is that we only need to train a neural link
prediction model on atomic queries to use our framework for answering a given
complex query, without the need of training on millions of generated complex
queries. This comes with the added value that we are able to explain each step
of the query answering process regardless of query complexity, instead of using
a black-box neural query embedding model.

The proposed method is agnostic to the type of query, and is able to generalise
without explicitly training on a specific variety of queries. Experimental results
show that CQD produces significantly more accurate results than current state-
of-the-art complex query answering methods on incomplete Knowledge Graphs.
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A Influence of the Embedding Size on the Results

In Table 4 we report results for CQD-CO (Section 3.1) and CQD-Beam (Sec-
tion 3.2) for different rank (embedding size) values. We can see that the model
produces very accurate results even with significantly fewer parameters.
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Table 4: Complex query answering results (H@3) across all query types, for differ-
ent rank (embedding size) values – results for Graph Query Embedding (GQE,
Hamilton et al., 2018) and Query2Box (Ren et al., 2020) are from Ren et al.
(2020).

Method Rank 1p 2p 3p 2i 3i ip pi 2u up

FB15k

GQE 800 0.630 0.346 0.250 0.515 0.611 0.153 0.320 0.362 0.271
Query2Box 400 0.786 0.413 0.303 0.593 0.712 0.211 0.397 0.608 0.330

CQD-CO

100 0.893 0.162 0.076 0.773 0.818 0.118 0.344 0.493 0.073
200 0.906 0.257 0.092 0.785 0.828 0.210 0.426 0.753 0.110
500 0.912 0.345 0.123 0.772 0.817 0.257 0.454 0.795 0.206
1000 0.918 0.454 0.191 0.796 0.837 0.336 0.513 0.816 0.319

CQD-Beam

100 0.893 0.746 0.557 0.773 0.818 0.357 0.669 0.689 0.313
200 0.906 0.770 0.585 0.785 0.828 0.373 0.679 0.815 0.357
500 0.912 0.759 0.580 0.772 0.817 0.372 0.650 0.831 0.351
1000 0.918 0.779 0.584 0.796 0.837 0.377 0.658 0.839 0.355

FB15k-237

GQE 800 0.405 0.213 0.153 0.298 0.411 0.085 0.182 0.167 0.160
Query2Box 400 0.467 0.240 0.186 0.324 0.453 0.108 0.205 0.239 0.193

CQD-CO

100 0.493 0.162 0.076 0.311 0.415 0.118 0.199 0.238 0.073
200 0.500 0.187 0.092 0.329 0.439 0.128 0.204 0.254 0.103
500 0.508 0.210 0.123 0.346 0.454 0.142 0.216 0.273 0.119
1000 0.512 0.213 0.131 0.352 0.457 0.146 0.222 0.281 0.132

CQD-Beam

100 0.493 0.256 0.207 0.311 0.415 0.119 0.234 0.254 0.121
200 0.500 0.272 0.216 0.329 0.439 0.122 0.244 0.264 0.127
500 0.508 0.280 0.216 0.346 0.454 0.127 0.257 0.280 0.128
1000 0.512 0.279 0.219 0.352 0.457 0.129 0.249 0.284 0.128

NELL995

GQE 800 0.417 0.231 0.203 0.318 0.454 0.081 0.188 0.200 0.139
Query2Box 400 0.555 0.266 0.233 0.343 0.480 0.132 0.212 0.369 0.163

CQD-CO

100 0.647 0.234 0.145 0.389 0.508 0.165 0.283 0.465 0.126
200 0.658 0.238 0.164 0.401 0.524 0.172 0.282 0.502 0.148
500 0.665 0.261 0.208 0.406 0.525 0.187 0.293 0.523 0.171
1000 0.667 0.265 0.220 0.410 0.529 0.196 0.302 0.531 0.194

CQD-Beam

100 0.647 0.333 0.296 0.389 0.508 0.160 0.293 0.469 0.150
200 0.658 0.335 0.292 0.401 0.524 0.162 0.290 0.508 0.146
500 0.665 0.348 0.296 0.406 0.525 0.166 0.291 0.527 0.149
1000 0.667 0.343 0.297 0.410 0.529 0.168 0.283 0.536 0.157
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B Timing Experiments
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Fig. 4: Number of seconds required by Q2B (Ren et al., 2020) and CQD-Beam
(Section 3.2 for answering each query type in FB15k.
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Fig. 5: Number of seconds required by Q2B (Ren et al., 2020) and CQD-Beam
(Section 3.2 for answering each query type in FB15k-237.

In Fig. 4 and Fig. 5 we report the time (seconds) required by Q2B (Ren et al.,
2020) and CQD-Beam (Section 3.2 for answering each query type, aggregated
over FB15k, FB15k-237, and NELL. We can see that, in CQD-Beam, the main
computation bottleneck are multi-hop queries, since the model is required to
invoke the neural link prediction model for each step of the chain to obtain the
top-k candidates for the next step in the chain.
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C DistMult Experiments

Table 5: Complex query answering results (H@3) across all query types, for two
different neural link prediction models, namely ComplEx (Trouillon et al., 2016)
and DistMult (Yang et al., 2015).

Method Model 1p 2p 3p 2i 3i ip pi 2u up

FB15k

CQD-Beam
ComplEx 0.918 0.779 0.584 0.796 0.837 0.377 0.658 0.839 0.355
DistMult 0.869 0.761 0.581 0.778 0.824 0.369 0.608 0.822 0.355

FB15k-237

CQD-Beam
ComplEx 0.512 0.279 0.219 0.352 0.457 0.129 0.249 0.284 0.128
DistMult 0.485 0.277 0.210 0.332 0.443 0.117 0.224 0.281 0.123

NELL995

CQD-Beam
ComplEx 0.667 0.343 0.297 0.410 0.529 0.168 0.283 0.536 0.157
DistMult 0.642 0.348 0.297 0.392 0.517 0.160 0.260 0.502 0.169

In Table 5 we report the results for CQD-Beam with two different neural link
prediction models, namely ComplEx (Trouillon et al., 2016) and DistMult (Yang
et al., 2015). Both models were trained using the loss and regulariser proposed
by Lacroix et al. (2018), and their hyperparameters were tuned according to
their performance in the validation set; in both cases, the embedding size is set
to 1,000. As expected, CQD-Beam with DistMult produces slightly less accurate
results than with ComplEx, while still yielding more accurate results than the
Q2B and GQE baselines.
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