
Using DeepProbLog to perform Complex Event Processing on an Audio Stream
Marc Roig Vilamala1,*, Tianwei Xing2, Harrison Taylor1, Luis Garcia2, Mani Srivastava2,

Lance Kaplan3, Alun Preece1, Angelika Kimmig4, Federico Cerutti1,5
1Cardiff University

2University of California, Los Angeles
3Army Research Laboratory

4KU Leuven, Department of Computer Science; Leuven.AI
5University of Brescia

*Corresponding author: RoigVilamalaM@cardiff.ac.uk

Abstract

In this paper, we present an approach to Complex Event Pro-
cessing (CEP) that is based on DeepProbLog. This approach
has the following objectives: (i) allowing the use of subsym-
bolic data as an input, (ii) retaining the flexibility and modu-
larity on the definitions of complex event rules, (iii) allow-
ing the system to be trained in an end-to-end manner and
(iv) being robust against adversarial conditions. Our approach
makes use of DeepProbLog to use a hybrid neuro-symbolic
architecture that combines a neural network to process the
symbolic data with a probabilistic logic layer to allow the user
to define the rules for the complex events. We demonstrate
that our approach is capable of detecting complex events from
an audio stream. We also demonstrate that our approach is
fairly robust against adversarial conditions by training it with
datasets under different levels of poisoning attacks.

1 Introduction
Complex Event Processing (CEP) systems process data
streams and detect situations of interest, or complex events,
which aggregate atomic events, or simple events. CEP sys-
tems detect spatio-temporal relationships between sets of
simple events, which form complex events. CEP systems
have been applied in many different areas, such as busi-
ness activity monitoring (Teymourian, Rohde, and Paschke
2012), sensor networks (Anicic et al. 2012b) and weather
reports (Anicic et al. 2012a). Most CEP approaches allow
the user to define rules which express the conditions under
which a complex event occurs. Then, the CEP system uses
those rules to detect when those circumstances happen in the
given stream of input data. However, defining rules over raw
streams of data can be challenging. For example, it is not
feasible to define rules directly over raw images, audios or
videos. In this paper, we will refer to these types of data for
which we cannot (easily) manually define rules to extract the
information we want as subsymbolic data.

Some new CEP approaches (Roldán et al. 2020; Roig Vil-
amala et al. 2019) have been created to incorporate the use of
subsymbolic data. However, as we will discuss in Section 3,
they require pre-trained neural networks to work, which are
not always available. While it is possible to train these neural
networks separately, it can be costly to obtain training data

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for that case. As such, we want an approach that can train
in an end-to-end manner. This means that we want a system
that can be trained using only labels for the complex events.
While some approaches already allow for such end-to-end
training (Xing et al. 2020), they significantly limit the flexi-
bility and modularity offered when defining the rules for the
complex events. This makes it difficult, or even impossible,
for the user to precisely express the conditions under which
a complex event occurs, particularly for the more complex
situations in which it may happen. In this paper, we aim
to propose an approach to CEP that can be trained to use
new types of subsymbolic data without limiting the flexibil-
ity and modularity of the rule definitions.

Another aim for our approach was to make it robust
against adversarial conditions, according to current AI ethi-
cal principles (Board 2019). These indicate that AI systems
should be reliable, meaning that the systems should behave
as expected even in sub-optimal conditions. For this paper,
we will be focusing on situations in which the training data
is noisy, meaning that part of the labels in the training dataset
are incorrect.

As such, we wanted to create an AI system that is capable
of performing CEP while fulfilling the following objectives:

1. Being able to operate on subsymbolic data streams.

2. Retaining flexibility and modularity in rule definitions.

3. Being able to perform end-to-end training.

4. Being robust against adversarial conditions.

Currently, none of the approaches to this type of problem
cover all such objectives. In Section 3 we will explain the
limitations of existing approaches.

In this paper, we propose an approach based on Deep-
ProbLog (Manhaeve et al. 2018; 2021) to detect complex
events from an audio stream. DeepProbLog allows us to
combine a neural network with probabilistic logic rule defi-
nitions. As such, the neural network can be used to process
the subsymbolic data, which can then be used within the
probabilistic logic to detect the patterns that form complex
events. Furthermore, the probabilistic logic allows users to
easily define the rules for the complex events. DeepProbLog
also allows us to train the system in an end-to-end manner,
thus fulfilling the first three objectives. For a background ex-
planation of DeepProbLog, see Section 2. Meanwhile, Sec-



tion 4 explains how we have used DeepProbLog to perform
complex event detection.

In order to evaluate the performance of our approach we
have generated synthetic datasets. For more details on the
dataset generation, see Section 5. Then, in Section 6 we eval-
uate the performance of our approach after training with the
generated datasts. First, we demonstrate that our approach is
capable of detecting complex events from an audio stream.
Then, we also demonstrate that our approach is fairly robust
against a poisoning attack on the training data. More specifi-
cally, we demonstrate that it is able to reach almost the same
performance even if 20% of the training data is incorrectly
labelled.

Finally, in Section 7 we provide conclusions on the results
obtained in this paper and discuss potential areas for future
research.

2 Background
In this section, we provide background information on
complex event processing (CEP). We also give a general
overview of ProbLog and DeepProbLob, which are used in
our approach.

2.1 Complex Event Processing
Following (Luckham 2002), an event is an object that can
be subjected to computer processing and it signifies, or is a
record of, an activity that has happened. Each event has three
main aspects:
• Form: the form of an event is an object with particular

attributes or data components, for instance the time period
of the activity;

• Significance: an event signifies an activity, hence an
event’s form usually contains data describing the activity
it signifies;

• Relativity: an activity is related to other activities. Events
have the same relationships to one another as the activities
they signify. The relativity of an event refers to the set
of relationships between that event and other events. An
event’s form usually encodes its relativities, i.e., methods
to reconstruct the relationships with other events.
It is therefore important to notice that an event is not just

a message or a record of an activity: the forms of events
may be messages, but the events also have significance and
relativity. In particular, the three main partial, transitive, and
antisymmetric relationships between events are:
• Time: a relationship that orders events.
• Cause: a dependence relationship between activities. An

activity (event) depends upon other activities (events) if it
happened only because the other activities (events) hap-
pened. If event B depends upon event A, then A caused B.
If neither caused the other, they are independent.1

• Aggregation: if event A signifies an activity that consists
of the activities of a set of events B1,B2, . . . , Bn, then A
is an aggregation of all the events Bi. Conversely, Bi are
members of A. Aggregation is an abstraction relationship:

1This computational notion of causality is ostensibly more lim-
ited than the notion of causality in philosophy and science in gen-
eral: an interested reader is referred to (Pearl 2009)

usually event A is created when a set of events {Bi} hap-
pens. A is a higher-level event and we call it a complex
event. A’s members are the events that caused it. Aggre-
gation can be referred to also as vertical causality.
In the context of this paper, CEP aims at identifying such

aggregation rules, so to make the activities in a complex sys-
tem understandable to humans. More specifically, we will
be using an audio feed as the source of the simple events,
which will take the form of short segments of audio (1 sec-
ond long). The incoming events will have a timestamp at-
tached to them, which will indicate at which point in time
the corresponding segment of audio started. As an example,
in this paper we will be aggregating events into a complex
event if the same type of sound (based on a set of pre-defined
classes) repeats within a certain window of time. However,
other aggregation rules could be used with our approach to
fit the intended functionality.

2.2 ProbLog
ProbLog (De Raedt, Kimmig, and Toivonen 2007) is a prob-
abilistic logic programming language. ProbLog allows users
to encode complex interactions between different compo-
nents. A ProbLog program consists of a set of probabilistic
facts F and a set of rules R. Facts have the form p :: f where
p is a value between 0 and 1, which represents the likelihood
of the fact being true, and f is an atom. Atoms are expres-
sions of the form q(t1, ..., tn) where q is a predicate and ti are
terms. Rules have the form h :− b1, ...,bn where h is an atom
and bi are literals. A literal is an atom or the negation of an
atom.

One convenient syntactic extension is an annotated dis-
junction (AD), which is an expression of the form p1 ::
h1; ...; pn :: hn :− b1, ...,bm. where the pi are probabilities
so that ∑ pi = 1, and hi and b j are atoms. The meaning of
an AD is that whenever all bi hold, h j will be true with
probability p j, with all other hi false (unless other parts of
the program make them true). This is convenient to model
choices between different categorical variables. ProbLog
programs with annotated disjunctions can be transformed
into equivalent ProbLog programs without annotated dis-
junctions (De Raedt and Kimmig 2015).

2.3 DeepProbLog
DeepProbLog (Manhaeve et al. 2018; 2021) is a neural prob-
abilistic logic programming language that allows the user to
create hybrid neuro-symbolic architectures. DeepProbLog
allows the user to train the neural networks in these archi-
tectures as part of the system in an end-to-end manner.

A DeepProbLog program is a ProbLog program that is ex-
tended with a set of ground neural ADs (nADs) of the form
nn(mq, [X1, ...,Xk],O, [y1, ...,yn]) :: q(X1, ...,Xk,O). Here, nn
indicates that the following is an nAD and mq is a neural
network identifier. The neural network mq will be provided
the input vector [X1, ...,Xk] and output a probability distribu-
tion over the domain O ∈ [y1, ...,yn]. nADs work similarly
to ADs in the sense that they provide a mutually-exclusive
distribution of probabilities over a set of atoms. In nADs,
however, these probabilities are generated from the output



of a neural network, instead of being manually defined. The
sum of the probabilities over the domain O must equal 1.
In neural networks for multiclass classification, this is typi-
cally done by applying a softmax layer to real-valued output
scores, a choice we also adopt in our experiments.

After defining the structure of the neural network and the
logic level, it is possible to use DeepProbLog to infer the
answers to our queries. To perform this inference, Deep-
ProbLog transforms the logic layer into an arithmetic circuit
and obtains the required probabilities from the neural net-
work. This arithmetic circuit can then be used to calculate
the probability that the query is true, based on the output of
the neural network.

In order to train the neural network, the system first per-
forms inference as described above. Then, DeepProbLog is
able to perform gradient-based learning. First, the arithmetic
circuit used during the inference is also used to perform the
gradient computations. Since this arithmetic circuit is com-
posed of addition and multiplication operations, this means
that it is differentiable. This allows DeepProbLog to com-
pute the gradient with respect to the probabilistic logic pro-
gram. This gradient can then be used to train the neural net-
work using backpropagation. For a more detailed explana-
tion on the technical aspects of DeepProblog’s inference and
learning, see (Manhaeve et al. 2021).

3 Critical analysis of related work
In this section, we will explore the existing CEP approaches
that are able to use subsymbolic data. There are three main
types of approaches: (i) using pre-trained neural networks to
extract the symbolic information from the subsymbolic data,
(ii) using a purely statistical approach and (iii) hybrid neuro-
symbolic approaches. In the following sections we will de-
scribe the limitations of each of those approaches, which our
approach aims to solve.

3.1 Pre-trained neural networks approaches
Some CEP approaches use a pre-trained neural network to
transform high-bandwidth data into symbolic information,
allowing the user to define rules on it. For example, in
(Roldán et al. 2020) the authors show that this allows them
to reduce the number of false positives in a system when de-
tecting IoT security attacks. They use a neural network to
predict the length of the suspected packets. If the predicted
length does not match the actual length of the packet, a com-
plex event is generated indicating that an attack might be
happening. In (Roig Vilamala et al. 2019), we present a sys-
tem that is able to detect different violent activities from a
CCTV feed. A pre-trained neural network is used to process
short segments of video (16 frames, about half a second) de-
tecting potential violent acts. Another pre-trained neural net-
work is used to detect people from the same video feed. The
outputs of these neural networks are then combined using
a probabilistic logic program to detect the complex, violent
events.

Both (Roldán et al. 2020) and (Roig Vilamala et al. 2019)
use pre-trained neural networks to parse the simple events.
In this paper, instead, we assume that no such pre-trained

neural networks exist. As such, we assume that only end-to-
end training is possible. This means that we only have train-
ing labels for when the complex events are happening, and
not for the simple events. While this does make the training
problem harder, it is undeniably easier to obtain labels for
the complex events, thus reducing the costs associating to
create the training set.

3.2 Purely statistical approaches
One possible approach is to view the whole CEP problem
as a classification problem, and—for instance—use neural
networks to detect when complex events occur. These ap-
proaches remove the manual definitions of complex events,
and instead attempt to train the neural network to identify
those definitions at the same time as it learns to classify
the subsymbolic data. Due to the relevance of time in the
definition of complex events, a Long Short Term Memory
(LSTM) (Mishra et al. 2018) or a Convolutional 3D layer
(C3D) (Liu et al. 2018) can be used. However, due to the ne-
cessity of learning the complex event rules, these approaches
need very large amounts of data to train. Furthermore, the
complexity of the rules that define the complex events is
limited, due to the fact that the neural networks need to learn
those rules.

3.3 Hybrid neuro-symbolic approaches
The current state of the art in CEP with subsymbolic data is
Neuroplex (Xing et al. 2020). Neuroplex is a hybrid neuro-
symbolic approach that makes use of human knowledge in
order to reduce the amount of training data required when
compared to purely statistical approaches. This is done by
dividing the problem into two levels; low-level perception
and high-level reasoning. The high-level reasoning is re-
sponsible for detecting the complex events based on manu-
ally defined rules, while the low-level perception is respon-
sible for parsing the subsymbolic data into a set of classes
that can be used when defining the rules.

In Neuroplex, the user defines the rules for the complex
events. Then, a neural network is trained to emulate a logic
layer that recognizes those rules. This allows users to inject
human knowledge into the system. The neural network that
emulates those rules is then used as the high-level reasoning.
This is combined with another neural network, which per-
forms the task of the low-level perception. Then, the high-
level reasoning layer is frozen, meaning that the weights for
this layer will not be modified by further training. Finally,
the system is trained in an end-to-end manner. This trains the
low-level perception neural network to recognize the simple
events into the classes used to define the complex events.

Using a neural network to emulate the user defined rules
is what allows Neuroplex to train in an end-to-end manner.
However, it also introduces some limitations. Firstly, the rea-
soning neural network needs to be trained each time that
the rules for the complex events are updated. As such, the
whole system needs to be trained even if there only is a small
change to the rules. Secondly, the ways in which complex
events can be defined are, currently, substantially limited
when compared to other CEP approaches. While improve-
ments could be made to the system that trains the high-level



Pr
e-

pr
oc

es
s

Pr
e-

pr
oc

es
s


123
1
.
.
.

255




7

105
.
.
.

42


AudioNN

AudioNN

...
happensAt(ceSiren, T) :- window(Window),

sequence([siren, siren], Window, T).
happensAt(ceDrilling, T) :- window(Window),

sequence([drilling, drilling], Window, T).
happensAt(ceCarHorn, T) :- window(Window),

sequence([car_horn, car_horn], Window, T).
...

DeepProbLog

Figure 1: Overall architecture of of our approach for the experiments performed in this paper.

reasoning to be more flexible, this would require a signifi-
cant amount of work. At the moment, the high-level neural
network can only be trained to recognize patterns of simple
events within a given window. Finally, while Neuroplex can
generate synthetic data to train the neural network to emu-
late the rules, it is not possible for the user to know that the
neural network will behave exactly as the rules define in all
situations. This is due to the nature of the neural network,
which may give an unexpected answer if the given situation
has not been seen in the training data. The only way to guar-
antee that the neural network will always behave as expected
is to evaluate every possible situation, which becomes un-
feasible as the complexity of the problem increases. As a
result, there is a risk Neuroplex will not be robust against
some adversarial conditions. In this paper, we propose an
architecture that aims to solve these issues.

4 Our approach
In this section, we describe how we have used DeepProbLog
to implement a hybrid neuro-symbolic approach to CEP. Our
approach allows users to inject human knowledge into the
system by manually defining rules for the complex events.
At the same time, it allows us to perform end-to-end train-
ing in order to make use of subsymbolic data such as audio.
This is archived by dividing the tasks into two distinct levels;
(i) a perception level, where a neural network is used to clas-
sify subsymbolic data in order to extract the symbolic infor-
mation and (ii) a reasoning level, where probabilistic logic
programming is used to define the complex event rules.

As explained above in Section 3.3, Neuroplex (Xing et
al. 2020) also divides the problem into perception and rea-
soning levels. However, as explained above, Neuroplex uses
a neural network to emulate the rules, instead of using an
explicit logic layer. By using an explicit logic layer in our
approach we remove the need of training a neural network
to emulate the functionality of the logic layer, which makes
it easier to update the complex event rules. Furthermore, we
also remove the risk of the neural network behaving in an
unexpected manner, thus providing a higher robustness.

In this paper, we use audio files as an input to the sys-
tem. For processing purposes, the input audio is divided into
one second segments, each of which is considered a simple
event. Then, we try to detect patterns where a sound of the
same class occurs twice withing the given window. More

specifically, we look for cases in which the same class oc-
curs at the last position in the window size and at some other
position within the window. When this happens, a complex
event is generated. The type of complex event will depend
on the class of the repeated simple event.

Figure 1 shows the diagram used for our experimentation.
Firstly, the input audio is divided into one second segments
and pre-processed. For this, we use VGGish (Hershey et al.
2017), a state-of-the-art feature extractor for audio classifi-
cation models2. VGGish performs a feature extraction pro-
cess which results in a matrix of size 128×N, where N is the
length of the input audio file in seconds. Each position in the
matrix contains a vaule between 1 and 255. After perform-
ing this pre-processing, the resulting matrix is fed into our
system. The vector resulting from each 1 second segment
is fed into a multilayer perceptron (MLP) neural network,
AudioNN in the diagram. This neural network classifies the
segment into one of the 10 classes that appear in our dataset.
The MLP used in our experimentation has 5 layers with 100,
80, 50, 25 and 10 neurons, in this order. A ReLU activation
function is used between each of the layers, and a Softmax
activation function is applied at the end.

Finally, the logic layer makes use of the output values
from the neural network to predict whether or not a certain
complex event is happening at a certain point in time. In
order to determine this, the rules provided by the user are
used. The diagram also shows a snippet of the logic rules
used to define the complex events. This code defines that
the complex events happen if a specific pattern of simple
events happens within a given window of time. For this pur-
pose, we have created the clause sequence, which allows
us to easily define which patterns of simple events gener-
ate the complex events. For more details on the code, see
https://github.com/dais-ita/DeepProbCEP.

For the experimentation in this paper, we set a maximum
number of epochs of 100. However, in order to avoid over-
fitting we also make use of early stopping with a patience of
10 epochs. This means that if the performance of the system
on the validation dataset does not improve for 10 epochs,
we end the training early. We will then use the weights that

2In order to make it compatible with DeepProbLog, we use
a PyTorch implementation of VGGish, available at https://
github.com/harritaylor/torchvggish



performed the best in the validation dataset for testing.

5 Datasets generation
In this section, we describe how we have generated the
datasets used to evaluate our approach. All the datasets
are generated using Urban Sounds 8K (Salamon, Jacoby,
and Bello 2014), a dataset containing over eight thousand
short audio files (4 seconds or less) that contain sounds
from 10 different classes: air conditioner, car horn, chil-
dren playing, dog bark, drilling, enginge idling, gun shot,
jackhammer, siren, and street music.

The first dataset used in our experiments are the base
datasets. These datasets allow us to evaluate how the size
of the sliding window affects the performance of the sys-
tem. In our approach, we use this sliding window to define
the maximum amount of time that can pass between the first
and last simple events that will be aggregated into a complex
event. As such, if a set of simple events follow the pattern we
have defined but they are too far apart in a temporal sense,
no complex event will be generated. This allows us to de-
fine that simple events that are separated by large amounts
of time have no relation to each other.

We also want to evaluate how robust or approach is, as
defined in the fourth objective from Section 1. For this pur-
pose, we have generated datasets that perform an adversarial
attack in the form of data poisoning. For this attack a per-
centage of the labels in the training dataset have been ran-
domly changed to an incorrect value. Different percentage
values are used to evaluate how this affects our approach.
We call this dataset type random noise dataset.

In the following sections we will give more details on how
both types of datasets have been generated.

For both types of datasets, we are using the same defi-
nitions for the complex events. Specifically, we are looking
for patterns in which the sound that occurs in the last posi-
tion of our sliding window also appears in another position
within the window size. Each of the 10 sound classes in Ur-
ban Sounds 8K generates a different class of complex event.

5.1 Base dataset
In this section, we describe how we generated the base
dataset. The process used to generate the base dataset al-
lows us to change the window size by changing the value
of Window. Window is a positive integer that indicates the
number of timestamps between the first and last simple
events that form a complex event. For this paper, we have
generated datasets with window sizes of 2, 3, 4 and 5.

In order to generate the base dataset, we use the different
folds from Urban Sounds 8K. Out of the 10 folds provided
by the original dataset, 8 are used to generate our training
dataset, 1 is used to generate our validation dataset and the
last fold is used to generate our testing dataset. The steps
to generate the base datasets are shown in Figure 2, which
illustrates the following steps:

1. We take all the audio files from the original dataset and
randomly shuffle them into a sequence S of simple events,
where each audio file represents one simple event. There-
fore, the length of S is the number of audio files in

the original dataset. Simple events can be accessed by
their index like so S[I]. For each of them we can access
the file itself and the class it contains using S[I].audio
and S[I].class, respectively. In order to have a consistent
length for all simple events, only the first second of each
audio file is used.

2. We create a list C that will indicate for each timestamp
whether a complex event happens. We initialize this list
with null, which hereinafter represents that no complex
event happens at the specified timestamp.

3. For each timestamp T where 0 < T < len(S):

(a) If the pattern for one of the complex events occurs,
mark C[T ] as the corresponding complex event. More
specifically, if there exists P such that T −Window <
P ≤ T and S[P].class = S[T ].class, mark C[T ] as ceN,
where N is the value of S[T ].class. This means that if
a sound occurs at the last position in the window (T )
and somewhere else within the window (P), a complex
event is generated.

(b) Otherwise, leave C[T ] marked as the null class.

4. Finally, if this is the training dataset, generate the training
sequence of simple events T S, which will only contain the
audio files, but not the ground truth of which class they
represent, as these should not be available when perform-
ing end-to-end training. Therefore, T S[I] = S[I].audio for
0 < I < len(S).

Before using these datasets for training, they are also bal-
anced in order to avoid overfitting for a specific class. This
results in a training dataset with 1000 training points for
each window size.

5.2 Random noise datasets
Given the complexity of the definition of some of the real
world complex events, it can sometimes be hard to correctly
label when a certain complex event is happening. This can
lead to errors on the training dataset, which might affect the
accuracy of the system after training. In Section 1, we de-
fined that one of our objectives was to be robust against
adversarial conditions. As such, we want to evaluate how
much of an effect training using a noisy dataset has on the
performance of our approach. Of course, this is not an issue
with our synthetically generated dataset. However, using a
synthetically generated dataset offers us the opportunity of
artificially introducing noise in a controlled manner. This al-
lows us to evaluate how well our approach might perform
when used on a real dataset, which might contain an un-
known level of noise.

We use a poisoning attack where we randomly change a
percentage of the training labels for another random label to
simulate this noise. For instance, assume that, based on the
complex event definitions, a certain timestamp is marked as
ceSirens. However, if this case is affected by the noise it will
be labelled as another complex event, which is selected ran-
domly every time. We will call the datasets generated using
this process random noise datasets.



Audio

siren

street music

drilling

air conditioner

siren

enginge idling

gun shot

children playing

enginge idling

Class

Urban Sounds 8K

0

1

2

3

4

5

6

7

8

Timestamp Audio

air conditioner

gun shot

enginge idling

siren

drilling

siren

children playing

enginge idling

street music

Class

S

Null

Null

Null

Null

Null

ceSiren

Null

Null

Null

C T S

Null

Null

Null

Null

Null

ceSiren

Null

Null

Null

C

Training

Shuffle

Figure 2: Diagram representing how the datasets used in this paper are generated. A window of 5 has been used. After randomly
shuffling the audio-class pairs from the Urban Sounds 8K dataset, we detect that at timestamp 5 we have two instances of the
class siren within the given window. Therefore, we mark timestamp 5 in C as ceSiren. We can also observe that there is a pair
of engine idling on timestamps 2 and 7. However, the distance between them is bigger than the given window, and therefore
that does not result in a complex event. Finally, for the training dataset we remove the ground truth for the sound class, as we
are doing end-to-end training.

In order to generate the random noise datasets, we use
the same steps described to generate the base dataset, ex-
plained above in Section 5.1. However, when labelling a cer-
tain timestamp as a complex event (Step 3a), there is prob-
ability of changing that label to a random complex event.
This probability is determined by the noise percentage pa-
rameter. We have generated datasets ranging from 0.0 to 0.6
noise, with a step of 0.2. For this, 0.0 means that no data
has been poisoned, while 1.0 would mean that all the data
has been poisoned. Finally, the datasets are balanced. These
datasets also have a size of 1000 training points.

It is important to note that this attack is only performed on
the training dataset. This means that the testing dataset will
maintain the ground truth, which will allow us to see how
the system would perform in a real life scenario.

This kind of noise might appear both due to a malicious
agent, and to the difficulty of labelling the sophisticated sce-
narios where a CEP system would be useful: for instance,
different annotators might be having different consideration
on what constitutes the a complex event.

6 Experimental analysis

In this section, we explore the accuracy results for our ap-
proach after training with the synthetic datasets explained in
Section 5.

All the values displayed on the graphs and tables in the
following sections are the result of averaging the accuracies
of 3 different executions.

Window size Accuracy STD
2 0.8657 0.0041
3 0.7645 0.0109
4 0.7069 0.0191
5 0.6401 0.0225

Table 1: Average accuracy results and standard deviation for
complex events classification by window size.

6.1 Performance with base dataset
In Table 1 we can see the results of training our approach on
a balanced dataset with 1000 training data points. As shown
in the table, the performance of the approach is fairly good
with a window size of 2. However, the performance does
decrease as the window size increases. This could have been
expected, as the problem gets more complex as the window
size increases. This is because a bigger window size contains
more simple events, which makes it more likely that the sys-
tem will incorrectly classify one of them. For example, this
can cause the system to predict that a complex event is hap-
pening when it is not, thus reducing the performance of the
system.

6.2 Robustness against poisoning attack with
random noise

As explained above, we also want to know how robust our
approach is against adversarial conditions. For this purpose,
we have trained the system with the random noise datasets



0.0 0.1 0.2 0.3 0.4 0.5 0.6
Training Dataset Size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

2
3
4
5

Figure 3: Evaluation of system’s performance with different
levels of noise in the training data. The horizontal axis indi-
cates the percentage of training data points where the class
has been randomly selected. The vertical axis indicates the
accuracy of the system for either individual classifications
or for complex event detection. The error bars represent the
standard deviation for each case. The error bars have been
slightly offset in their horizontal axis to avoid overlapping,
which would make them hard to read.

(explained above in Section 5.2) and evaluated how the per-
formance is affected. The results are shown in Figure 3. As
seen in the graph, while there is a slight decrease in perfor-
mance when training with the 20% noise dataset, it does not
seem to significantly impact the system. By contrast, with
a percentage of noise of 40% or higher, the performance
seems much less consistent. While, in some cases, the sys-
tem is still able to train correctly, in others it performs very
significantly worse. This is what causes the high standard
deviation that can be seen in the graph. However, it does not
seem likely that the user would not realize that almost half
of the training points in the dataset are incorrectly labelled.
As such, we would argue that our approach is robust against
reasonable amounts of noise.

7 Conclusion and future work
In this paper we have presented a hybrid neuro-symbolic
approach capable of performing CEP on subsymbolic data.
More specifically, we have demonstrated that our approach
is capable of detecting complex events from an audio stream
after training end-to-end. We have also shown that our ap-
proach is quite robust against a random noise poisoning at-
tack, thus fulfilling all four objectives defined in Section 1.

As part of future work, we are considering on evaluating
the performance on other types of subsymbolic data. This
should be possible by changing the architecture of the neural
network based on the type of subsymbolic data we want to
use.

An other area on which future research could be applied
is on the time efficiency of the approach. Due to the use of a
logic layer, our approach is slower in both training time and

inference time when compared to approaches that are imple-
mented using a neural network, such as Neuroplex (Xing et
al. 2020). This is mostly due to the cost of generating the
arithmetic circuit used to calculate the output for the logic
layer. DeepProbLog offers a cache functionality to reduce
the amount of times this arithmetic circuit has to be gener-
ated. However, some further research will be needed to make
the most out of this functionality for problems that deal with
a temporal aspect.

8 Acknowledgements
This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of De-
fence or the U.K. Government. The U.S. and U.K. Govern-
ments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright nota-
tion hereon.

References
Anicic, D.; Rudolph, S.; Fodor, P.; and Stojanovic, N. 2012a.
Real-time complex event recognition and reasoning-a logic
programming approach. Applied Artificial Intelligence - AAI
26:6–57.
Anicic, D.; Rudolph, S.; Fodor, P.; and Stojanovic, N. 2012b.
Stream reasoning and complex event processing in ETALIS.
Semantic Web 3:397–407.
Board, D. I. 2019. Ai principles: Recommendations on the
ethical use of artificial intelligence by the department of de-
fense. Supporting document, Defense Innovation Board.
De Raedt, L., and Kimmig, A. 2015. Probabilistic (logic)
programming concepts. Machine Learning 100(1):5–47.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. ProbLog:
A probabilistic prolog and its application in link discovery.
IJCAI International Joint Conference on Artificial Intelli-
gence 2468–2473.
Hershey, S.; Chaudhuri, S.; Ellis, D. P.; Gemmeke, J. F.;
Jansen, A.; Moore, R. C.; Plakal, M.; Platt, D.; Saurous,
R. A.; Seybold, B.; et al. 2017. Cnn architectures for large-
scale audio classification. In 2017 ieee international con-
ference on acoustics, speech and signal processing (icassp),
131–135. IEEE.
Liu, K.; Liu, W.; Gan, C.; Tan, M.; and Ma, H. 2018. T-
c3d: Temporal convolutional 3d network for real-time action
recognition.
Luckham, D. C. 2002. The Power of Events: An Introduc-
tion to Complex Event Processing in Distributed Enterprise
Systems. USA: Addison-Wesley Longman Publishing Co.,
Inc.
Manhaeve, R.; Dumancic, S.; Kimmig, A.; Demeester, T.;
and De Raedt, L. 2018. Deepproblog: Neural probabilistic
logic programming. In NIPS2018. 3749–3759.



Manhaeve, R.; Dumančić, S.; Kimmig, A.; Demeester, T.;
and De Raedt, L. 2021. Neural probabilistic logic program-
ming in deepproblog. Artificial Intelligence 298:103504.
Mishra, S.; Jain, M.; Siva Naga Sasank, B.; and Hota, C.
2018. An ingestion based analytics framework for complex
event processing engine in internet of things. In Mondal, A.;
Gupta, H.; Srivastava, J.; Reddy, P. K.; and Somayajulu, D.,
eds., Big Data Analytics, 266–281. Cham: Springer Interna-
tional Publishing.
Pearl, J. 2009. Causality: Models, Reasoning, and Inference.
Cambridge University Press.
Roig Vilamala, M.; Hiley, L.; Hicks, Y.; Preece, A.; and
Cerutti, F. 2019. A pilot study on detecting violence in
videos fusing proxy models. In 2019 22th International
Conference on Information Fusion (FUSION), 1–8.
Roldán, J.; Boubeta-Puig, J.; Luis Martı́nez, J.; and Ortiz,
G. 2020. Integrating complex event processing and machine
learning: An intelligent architecture for detecting iot security
attacks. Expert Systems with Applications 149:113251.
Salamon, J.; Jacoby, C.; and Bello, J. P. 2014. A dataset and
taxonomy for urban sound research. In 22nd ACM Inter-
national Conference on Multimedia (ACM-MM’14), 1041–
1044.
Teymourian, K.; Rohde, M.; and Paschke, A. 2012.
Knowledge-based processing of complex stock market
events. In Proceedings of the 15th International Conference
on Extending Database Technology, EDBT ’12, 594–597.
New York, NY, USA: Association for Computing Machin-
ery.
Xing, T.; Garcia, L.; Vilamala, M. R.; Cerutti, F.; Kaplan,
L.; Preece, A.; and Srivastava, M. 2020. Neuroplex: Learn-
ing to Detect Complex Events in Sensor Networks through
Knowledge Injection. New York, NY, USA: Association for
Computing Machinery. 489–502.


