
Pre and Post Counting Approaches for Scalable Statistical-Relational Model
Discovery

Richard Mar, Oliver Schulte
Simon Fraser University

richard mar@sfu.ca, oschulte@cs.sfu.ca

Abstract
Statistical-Relational Model Discovery aims to find statisti-
cally relevant patterns in relational data. Relational patterns
may be represented in first-order graph models and/or a set
of clauses. For example, a relational dependency pattern may
stipulate that a user’s gender is associated with the gender of
their friends. As with propositional graphical models, the ma-
jor scalability bottleneck for model discovery is computing
instantiation counts: the number of times a relational pattern
is instantiated in a database. Previous work has utilized pre-
counting or post-counting to solve this task. A pre-counting
approach computes and caches instantiation counts for a
large set of relational patterns before model search. A post-
counting approach computes an instantiation count dynami-
cally on-demand for each candidate pattern generated during
the relational model search. This paper takes a detailed look
at the memory and speed trade-offs between pre-counting
and post-counting strategies for relational learning. We de-
scribe a novel hybrid approach that achieves a sweet spot with
pre-counting for patterns involving positive relationships (e.g.
pairs of users who are friends) and post-counting for patterns
involving negative relationships (e.g. pairs of users who are
not friends).

Introduction
Everyday the size of databases continues to grow and many
applications from various areas such as business intelligence
and healthcare extract information from them. Statistical-
Relational Learning (SRL) aims to construct statistical mod-
els that extract knowledge from complex relational and net-
work data. SRL models are often applied to datasets that
are large (with many entities/nodes/rows) and complex (with
many attributes and types of relationships, or predicates in
logic syntax).

SRL model construction searches through a space of pos-
sible models, scoring different candidate models to find a
(local) statistical score optimum. SRL models are typically
composed of local dependency patterns, represented with
edges in a model graph or clauses in logical syntax. The
main computational burden in model scoring is instance
counting, determining the number of times that a local pat-
tern defined by the model occurs in the dataset. A key tech-
nique to scale counting for large and complex datasets is

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

caching local instance counts and statistical scores. Caching
trades memory for model search time and is standard in
graphical model search for propositional (i.i.d.) data (e.g.
(The Tetrad Group 2008)). There are two basic approaches
to counts caching: Pre-counting builds up a large cache of
local pattern counts before the model search phase. Post-
counting computes local instance counts only for patterns
generated during model search and then adds them (or the
resulting scores) to a cache in case the pattern is revisited
later during model search. (Lv, Xia, and Qian 2012) de-
scribe in detail the pros and cons of pre and post counting
for propositional model search. This paper compares pre and
post counting for relational model search.

To understand the differences, we briefly review why rela-
tional counting problems are fundamentally different from,
and harder than, counting in propositional data. For propo-
sitional data, a conjunctive pattern specifies a set of attribute
values for singletons of entities; for example, the set of fe-
male users over 40. Counting then requires only filtering,
finding the subset of existing entities matching the pattern.
Relational data specify linked pairs of entities, like users
who are friends (assuming binary relationships), where two
new counting problems arise:

1. Relational patterns may involve k-tuples of entities/n-
odes. For example, a triangle involves 3 nodes. A naive
approach to counting would require enumerating nk k-
tuples of entities, which does not scale in the number of
entities n even for small k. In an SQL table representa-
tion of relational data, counting for k-tuples of entities
involves table JOINs; we therefore term it the JOIN prob-
lem. The JOIN problem has been extensively studied in
the database community as part of SQL query evaluation
(COUNT(*) queries).

2. Relational patterns may involve negative relationships,
pairs of entities not listed in the data. For example, we
may wish to find the number of women users who have
not rated a horror movie. We term this the negation prob-
lem. The JOIN and negation problems both involve tuples
that are not subsets of the given data tuples.

The main advantage of pre-counting is that the data is
scanned only once to build up a cache. In particular, the
number of table JOINs is minimized, as our experiments
show. Also, the cache can be built incrementally using dy-



namic programming by computing counts for longer pat-
terns from shorter ones (Lv, Xia, and Qian 2012). For exam-
ple, in relational data, counts with a relationship chain length
of l can be built up from relationship chains of length 1, 2, ...,
l - 1 (Yin et al. 2004; Schulte and Qian 2019). The main dis-
advantage of pre-counting is building a large cache of counts
for complex patterns, with only a fraction likely to be re-
quired for model selection. For example, pre-counted depen-
dency patterns may involve 20 predicates, whereas model
search rarely considers clauses with more than 5. The main
advantage of post-counting is that counting is performed
only as required for patterns generated by the model search.
The disadvantage is that each pattern evaluation requires a
new data access with potentially expensive table JOINs.

A high-level summary of our findings is that because of
the JOIN problem, purely post-counting scales substantially
worse than purely pre-counting. At the same time, the nega-
tion problem is challenging for the large patterns built up in
pre-counting. Therefore, we introduce a hybrid method that
uses pre-counting for the JOIN problem and post-counting
for the negation problem. The hybrid method leverages the
Möbius Join algorithm which computes instance counts for
relational patterns that may involve positive and negative re-
lationships (Qian, Schulte, and Sun 2014). The Möbius Join
is an inclusion-exclusion technique that requires no further
data accesses to the original data, and hence no further table
JOINs. Our contributions may be summarized as follows:
• Describing pre and post counting strategies for building

cache counts that support SRL model evaluation.
• Investigating the strengths and weaknesses of pre/post

counting strategies for different dataset properties.
• Describing a new hybrid method that for many datasets

combines the strengths of both pre and post counting.

Related Work
We selectively discuss the most relevant topics from previ-
ous SRL work.

Language Bias. We consider first-order relational patterns
only that involve types of individuals, not specific individu-
als (e.g. Friend(X ,Y ) not Friend(joe,Y )). While this is
a common restriction in SRL (Ravkic, Ramon, and Davis
2015; Schulte et al. 2016; Kimmig, Mihalkova, and Getoor
2014), it limits the applicability of our results to meth-
ods that search for clauses involving individuals, such as
Boostr (Natarajan et al. 2012). Our experiments investigate
learning directed models (first-order Bayesian networks),
but our observations about the fundamental JOIN and nega-
tion problems apply to other SRL models as well (e.g. undi-
rected models).

Search Space: Predicates vs. Clauses Inspired by graph-
ical models, a tradition in SRL is to search for dependen-
cies between predicates, typically represented by links in
a model graph. For example, an edge intelligence(S ) ←
grade(S ,C ) may represent that the grades of a student
predicts their intelligence. Another tradition, inspired by
inductive logic programming, searches for dependencies
among predicate values, typically represented by clauses
(e.g. intelligence(S ) = high :- grade(S ,C ) = A). Since

the space of clauses is smaller, it supports a more efficient
model search (Kersting and De Raedt 2007; Friedman et al.
1999; Khosravi et al. 2010) at the expense of expressive
power (Khosravi et al. 2012). With regard to instance count-
ing, a predicate dependency groups together a set of clauses
(one for each combination of parent-child values). Model
evaluation requires instance counting for the entire clause
set, which is often more efficient than separate counting, if
the data for the same predicates is stored together. For ex-
ample if in an SQL table, grades are stored in the same table
column, then counting instances for different grades requires
only a single table JOIN. While our experiments evaluate
only predicate-level search, we expect that the general trends
apply also to clause-level search.

Approximate vs. Exact Counting. Several SRL approaches
have increased scalability by aiming for approximate count-
ing, which is often sufficient for model evaluation (e.g. (Das
et al. 2019)). In this paper we use only exact counts, ob-
tained by efficient SQL queries. Other SRL work has also
shown the usefulness of SQL optimization for obtaining in-
stance counts (e.g. (Niu et al. 2011)). Approximate count-
ing speeds up the instance for a single pattern, which is or-
thogonal to our topic of counts caching; caches can be used
for both approximate and exact counts. We discuss approx-
imate counting further in the future work section. Another
type of approximation is negative sampling of unlinked node
pairs, which adds extra node pairs to the data (Nickel et al.
2016). Computationally, negative sampling solves the nega-
tion problems but increases the JOIN problem. Caching
counts for negative sampling is an interesting direction for
future work.

In the following sections, necessary background informa-
tion will be provided followed by the possible methods for
achieving scalable construction of contingency tables (ct-
tables). Each method for computing ct-tables from multi-
relational data is then analyzed and compared, showing the
advantages of the HYBRID method for caching ct-tables
from a relational database.

Graphical Model Background
We choose the FACTORBASE system (Schulte and Qian
2019) for experimentation and to illustrate computational
counting challenges. FACTORBASE learns a first-order
Bayesian network (BN) (Getoor and Taskar 2007)) for a re-
lational dataset. FACTORBASE is an appropriate benchmark
as it achieves SOTA scalability (Schulte et al. 2016). We fo-
cus on our description on fundamental issues associated with
relational counting that we expect to generalize to other sys-
tems. In the Limitations section, we discuss other design op-
tions not explored in our experiments.

As an example model score, the BDeu score for a given
BN B and dataset D is defined in Equation 1. Descriptions
of the variables can be found in Table 1. (Schulte and Gho-
lami 2017) showed how the BDeu score can be adapted for
multi-relational data. The count operations required are es-
sentially the same between the relational BDeu score and
the propositional score shown, and similar for other BN
scores. The most computationally expensive part of BDeu,
and many other scoring metrics, is generating instantiation



BDeu(B,D) = log (P (B)) +

n∑
i=1

qi∑
j=1

log

 Γ
(

N ′

qi

)
Γ
(
Nij +

N ′

qi

)
+

ri∑
k=1

log

Nijk + N ′

riqi

Γ
(

N ′

riqi

)
 (1)

Variable Description

n Number of nodes in the graph.
qi Number of parent configurations for node i.
ri Number of possible values for node i.
N ′ Equivalent sample size.
Nij Number of occurrences where nodei has its par-

ents in the jth configuration.
Nijk Number of occurrences where nodei is assigned

its kth value with its parents in the jth configu-
ration.

Table 1: Variables of the BDeu scoring metric.

Professor(P) Student(S) Course(C)

RA(P,S) Registered(S,C)

Registered(S,C),RA(P,S)

Figure 1: A relationship lattice for two relationships (stu-
dents register in courses and work as RAs for professors)
where each node in the graph is a lattice point.

or frequency counts to obtain the Nij and Nijk values. In-
stance counts can be represented in a ct-table: For a list of
variables V1, . . . , Vm, the table contains a row for each value
tuple v1, . . . , vm, and records how many times this value
combination occurs in the data set (Lv, Xia, and Qian 2012;
Qian, Schulte, and Sun 2014). Following (Lv, Xia, and Qian
2012), we use ct-tables as caches for instance counts. We
next describe a method for computing relational ct-tables.

Computing Relational Contingency Tables
We use the method of (Qian, Schulte, and Sun 2014), as
implemented in FACTORBASE. As discussed under Related
Work, other methods may be employed as well, such as
approximate counting. In a relational ct-table, a key role
is played by relationship indicator variables that indicate
whether a relationship holds (e.g. Registered(S ,C ) = T )
or not (e.g. Registered(S ,C ) = F or ¬Registered(S ,C )).
In a positive ct-table, all relationship indicator variables are
set to T (true). A complete ct-table contains values for both
true and false relationships; see Table 3 for illustration. The
last 9 rows form the positive ct-table. The predicate RA(P,S)
represents that a student is an RA for a professor, and the

Positive ct-table Negative ct-table Learning Method

Lattice Point Lattice Point PRECOUNT
Family Family ONDEMAND
Lattice Point Family HYBRID
Family Lattice Point IMPOSSIBLE

Table 2: Summary of possible methods to consider for com-
puting ct-tables from a relational database based on the in-
puts for creating the positive and negative ct-tables.

Count Capa(P,S) RA(P,S) Salary(P,S)

203 N/A F N/A
5 4 T HIGH
4 5 T HIGH
2 3 T HIGH
1 3 T LOW
2 2 T LOW
2 1 T LOW
2 2 T MED
4 3 T MED
3 1 T MED

Table 3: A contingency table represents instantiation counts
of a conjunctive condition in a database. For example, the
last row shows that the number of instances (groundings) is
3 for the assignment Capa(P,S) = 1, RA(P,S) = T, Salary(P,S)
= MED. Numbers are chosen for illustration.

attributes Capa(P,S) and Salary(P,S) represent a student’s
salary and capability when they are the RA for a given pro-
fessor.

FACTORBASE uses a 2-stage approach to compute a rela-
tional ct-table, which is described as follows:

1. Input: A list of variables V1, . . . , Vm, and a relational
dataset D.

2. Generate a positive ct-table ct+(R) for each relation-
ship lattice point R. FACTORBASE uses SQL INNER
JOINs to compute a ct-table for existing relationships (a
COUNT(*) query with a GROUP BY clause).

3. Extend ct+(R) to a complete ct-table ct (R). FACTOR-
BASE uses the Möbius Join for this step.

The Möbius Join is an inclusion-exclusion technique
whose details will not be discussed as they are somewhat
complex and not necessary for this work. The main points
of importance for this research are as follows:

1. Given a positive ct-table, where all relationships are true,
the Möbius Join returns a ct-table for both existing and
non-existing relationships without further access of the
original data.



2. The runtime cost of the Möbius Join as shown by (Qian,
Schulte, and Sun 2014) is the following:

O (r log (r)) (2)

where r is the number of rows in the output ct-table.

The runtime analysis assumes that the JOINs executed dur-
ing the Möbius Join algorithm use a sort merge join. Next
we consider approaches for computing relational ct-tables.
The basic choices are to compute a global ct-table for all
variables or those associated with a chain of relationships.
Or a smaller ct-table for those associated with a family (lo-
cal pattern). Table 2 lays out the options, which we discuss
in the next sections.

PRECOUNT Counts Caching Method
Chains of relationships form a lattice that can be used
to structure relational model search (Schulte and Khosravi
2012; Yin et al. 2004; Friedman et al. 1999); see Fig-
ure 1. For instance, the learn-and-join model search (Schulte
and Khosravi 2012) builds up BNs for each lattice point
in a bottom-up fashion. The pre-count method computes
a ct-table for each relationship chain, for all variables as-
sociated with the chain. For example, for the lattice point
Registered(S ,C ), the variables include all attributes of stu-
dents, courses, and the registration link (e.g. grade). The
high-level structure of pre-count caching is illustrated in Al-
gorithm 1. Given a large ct-table, we can compute a smaller
ct-table for a subset of columns by summing out the un-
wanted columns; this operation is called projection (Lv,
Xia, and Qian 2012). For example, given a ct-table for
the lattice point Registered(S ,C ) with columns for all at-
tributes of students, projection can be used to obtain a ct-
table for just one student attribute. During structure search,
pre-count computes ct-tables for local families from the ap-
plicable lattice point ct-table using projection.

PRECOUNT will generate ct-tables for each relationship
chain that grow in size as we increase the chain length,
which is a key factor for its computational performance.

Algorithm 1 The PRECOUNT method: pre-compute ct-
tables for each lattice point.

1: for each latticePoint LP ∈ relationshipLattice do
2: ct+(LP )← INNERJOIN(TABLES(LP ))
3: ct (LP )← MÖBIUSJOIN(ct+(LP ))
4: end for
5: for each family ∈ structureLearning do
6: ct (family)← PROJECT(ct (LP ), family)
7: score ← BDEU(ct (family))
8: end for

Contingency Table Growth Rate for PRECOUNT
Given a database table T with C columns where each col-
umn contains ≤ V values each, the size (number of rows)
of T can be upper bound using the following expression:

SIZE(T ) = O
(
V C

)
(3)

From Equation 3 we see that ct-tables grow exponentially
with respect to the number of columns when using PRE-
COUNT. The alternative is to generate many small tables
that are equivalent to the single large one, but grow in size at
a slower rate. This is the approach used by ONDEMAND,
which is described next.

ONDEMAND Counts Caching Method
This is one of two alternative methods to PRECOUNT for
computing ct-tables from a relational database and is an
adaptation of the single-table post-counting concept from
(Lv, Xia, and Qian 2012). ONDEMAND works the same
as PRECOUNT except it computes ct-tables for families not
relationship chains.

Since ONDEMAND will generate a ct-table for each fam-
ily of nodes that is scored, these ct-tables grow a lot slower
than the ones generated with PRECOUNT.

Algorithm 2 The ONDEMAND method: compute ct-tables
for each family during structure search.

1: for each family ∈ structureLearning do
2: ct+(family)← INNERJOIN(TABLES(family))
3: ct (family)← MÖBIUSJOIN(ct+(family))
4: score ← BDEU(ct (family))
5: end for

Contingency Table Growth Rate for ONDEMAND
Given a table T with C columns, with each column contain-
ing ≤ V values each and k parents to choose from, the total
size of the equivalent multi-table version of the single large
one can be upper bound using the following expression:

SIZE(T ) = O

(
C

(
C − 1

k

)
V k+1

)
(4)

From Equation 4 we see that ct-tables grow exponentially
with respect to the size of the family of nodes being scored
when using ONDEMAND. Therefore, ONDEMAND is ad-
vantageous only if the family sizes generated during search
are small. Inspection of the BDeu equation seen in Equa-
tion 1 reveals that small families will be favoured as large
families are highly unlikely since they will incur an expo-
nential penalty resulting in a low metric score. Indeed the
literature on BN learning states that the maximum number
of parents is typically 4 (Lv, Xia, and Qian 2012; Tsamardi-
nos, Brown, and Aliferis 2006). The general expectation that
BN nodes have small indegrees also holds in this work’s
datasets. Table 4 shows the mean number of parents per node
in the BN learned for the various databases used in the ex-
periments and supports this statement.

Although the expected total size of the ct-tables generated
using ONDEMAND is promising, it also generates many
positive ct-tables, which can lead to many expensive table
JOINs.

HYBRID Method
This is the new alternative method to PRECOUNT for com-
puting ct-tables from a relational database. The pseudocode



for it is found in Algorithm 3. HYBRID combines the
strengths from PRECOUNT and ONDEMAND and has the
following characteristics:

• Like PRECOUNT, it generates a positive ct-table ct+(R)
for each relationship lattice point R.

• Like ONDEMAND, it generates a ct-table ct (F) for each
family of nodes F being scored.

Algorithm 3 Generating ct-tables using HYBRID.
1: for each latticePoint LP ∈ relationshipLattice do
2: ct+(LP )← INNERJOIN(TABLES(LP ))
3: end for
4: for each family ∈ structureLearning do
5: ct+(family)← PROJECT(ct+(LP ), family)
6: ct (family)← MÖBIUSJOIN(ct+(family))
7: score ← BDEU(ct (family))
8: end for

The HYBRID method uses the ct+(R) as a cache to re-
place expensive JOINs with projections (line 5). Assuming
that local families are small, extending positive ct-tables to
complete ones is relatively fast; see Equation (2). Both HY-
BRID and PRECOUNT assume that the overall number of
columns/relationships in the database is moderate so that
computing the positive ct-table using all columns of a given
lattice point is feasible. In other words, ct+(R) can be com-
puted via a JOIN without exhausting the available resources.
If the overall number of columns/relationships is too large to
compute the ct+(R) tables, ONDEMAND must be used in-
stead of PRECOUNT or HYBRID.

Hardware and Datasets
Jobs were submitted to Compute Canada’s Cedar high per-
formance cluster using Slurm version 20.11.4. Each job re-
quested one 2.10GHz Intel Broadwell processor and enough
RAM to process each dataset. In addition, the cluster re-
quired a time limit to be specified for each job and as a result
each job was allotted a runtime of 100 minutes. This amount
of time was allotted since it was more than enough time
for FACTORBASE to finish processing most datasets while
at the same time allowing the jobs to be scheduled to run
on the cluster within 24 hours after job submission. Using
MariaDB version 10.4 Community Edition, 8 real database
sources of varying size and complexity were supplied as in-
put to FACTORBASE for each method in Table 2. Of these
8 databases, 7 are benchmark databases that have been used
in previous studies where the scalability of methods for con-
structing BNs from relational databases was studied (Schulte
and Qian 2019; Schulte et al. 2016). Visual Genome is added
to this list of benchmark databases due to the large amount of
data and number of relationship tables it possesses compared
to the other 7 databases; see Table 4. Visual Genome is the
only dataset that required preprocessing where ternary rela-
tionships had to be converted into binary relationships. After
the ternary to binary relationships conversion was done, en-
tity tables with only a primary key column had a dummy at-
tribute column added with the same value used for all rows.

File Size Database Relationship
Table Count

MP/N

18KB Mondial 2 1.3
20KB UW 2 1.6
221KB Mutagenesis 2 1.6
345KB Hepatitis 3 1.7
1.1MB MovieLens 1 1.4
5.7MB Financial 3 1.9
23MB IMDb 3 3.4
239MB Visual Genome 8 0.5

Table 4: Databases used as input to FACTORBASE with their
associated mysqldump file size, number of relationship ta-
bles they contain, and the mean number of parents per node
(MP/N) in the BNs learned when using FACTORBASE and
the BDeu score.

DB Estimated Total
ct (family) Row
Count

ct (database) Total
Row Count

MovieLens 816 239
Mutagensis 6075 1631
UW 15318 2828
Visual Genome 2923968 20447
Mondial 55800 1738867
Financial 930468 3013006
Hepatitis 176220 12374892
IMDb 33040 15537457

Table 5: Size of the ct-tables generated for each family
scored and the entire database. The ct (family) column is
for ONDEMAND and HYBRID while the ct (database)
column is for PRECOUNT. Databases are sorted in ascend-
ing order based on the size of the ct-table generated for the
entire database.

These two modifications ensure that FACTORBASE could
process the Visual Genome dataset.

Runtime Measurement Methodology
Since the focus of this research is reducing the time it
takes to generate ct-tables for large relational databases, We
break down ct-table construction runtime into the following
3 components to have a better understanding of the process:

• MetaData
• Positive ct-table (ct+)

• Negative ct-table (ct−)

MetaData This component consists of various metadata
specifying the relational schema (syntax) that is extracted
and generated from the input database. It includes the ex-
traction of the first-order logic information related to the ct-
tables being generated, generation of the relationship lattice,



Figure 2: Comparison of the time it takes for ct-tables to be constructed for PRECOUNT, ONDEMAND, and HYBRID. For
IMDb and Visual Genome, ONDEMAND failed to complete within the allotted time so only partial results have been included
for those datasets in this figure.

and generation of the metaqueries, which are used to con-
struct the dynamic SQL query statements for performing the
necessary database queries.

Positive ct-table This component consists of the ct+
counting information, which is made of two types of count-
ing queries. One type of counting query generates the counts
for entity tables where a simple query with a GROUP BY in-
volving no JOINs is used. The other type of counting query
is for generating the positive ct-tables that require JOINs.

Negative ct-table This component consists of the Möbius
Join so it is made of the time it takes to generate the counts
for all combinations of negative relationships.

Results
Figure 2 shows the cumulative time it takes to construct
all the ct-tables for a given database. The times are broken
down into the 3 components of MetaData, Positive ct-table
(ct+), and Negative ct-table (ct−). For ONDEMAND, the
execution of FACTORBASE exceeded the allotted runtime of
100 minutes when supplied IMDb and Visual Genome as
input. Hence their results are omitted, or are incomplete if

included in a figure. As expected, due to the large size of the
ct-tables being generated, PRECOUNT spends a lot of time
generating the negative ct-table compared to the other two
methods. Overall ONDEMAND performs poorly in com-
parison to PRECOUNT, mostly due to the time it takes to
generate the local positive ct-tables, especially for the large
databases like IMDb and Visual Genome. HYBRID on the
other hand performs better than PRECOUNT on several of
the databases so we examine why next.

Negative ct-tables This is due to the reduced negative ct-
table construction time because HYBRID generates smaller
ct-tables (see Equations 2 and 4).

Some databases are exceptions to this trend (UW, Mutage-
nesis and MovieLens), where the Negative ct-table compo-
nent for HYBRID takes longer than PRECOUNT. Here the
local ct-tables are similar in size to the global one, negating
the benefits of small ct-tables where their construction over-
head becomes an issue. For further evidence, Table 5 shows
that for the databases where HYBRID does worse than PRE-
COUNT, the total number of rows for the ct-tables generated
when using HYBRID exceeds the number of rows for the
global ct-table generated when using PRECOUNT.



Figure 3: Comparison of the maximum resident set size used
by the Java portion of FACTORBASE when constructing ct-
tables for PRECOUNT (P), ONDEMAND (O), and HY-
BRID (H). Results have been omitted for ONDEMAND in
the cases where it failed to complete within the allotted time.

Positive ct-tables The positive ct-tables for each family
scored by HYBRID are generated by projecting the infor-
mation from the full positive ct-tables for the lattice points.
Therefore, scoring a family does not require further ta-
ble JOINs. Although HYBRID performs better than PRE-
COUNT for most of the databases experimented with, there
are a few cases where PRECOUNT does better. This is
mainly a result of the MetaData component for HYBRID
taking substantially longer due to overhead costs, and also
due to the Negative ct-table component.

MetaData Figure 2 reveals that HYBRID inherited ON-
DEMAND’s increased overhead to generate the metadata,
which is shown to be negligible for PRECOUNT. Although
the metadata overhead is a bottleneck only for ONDE-
MAND and HYBRID, it does not hurt scalability: The Meta-
data component is prominent for small databases like Mon-
dial and UW, but essentially disappears for large databases
like IMDb and Visual Genome.

Memory Profiling
Figure 3 compares the peak memory used when process-
ing the various databases. It shows that PRECOUNT is gen-
erally more memory intensive than ONDEMAND and HY-
BRID. However, there are 3 databases where PRECOUNT
uses similar amounts of memory. These 3 databases corre-
spond to the ones in Figure 2 where PRECOUNT performs
the best for the Negative ct-table component. In addition,
from Table 5, these 3 databases are the cases where the to-
tal size of the ct-tables generated using ONDEMAND and
HYBRID exceed the size of the global ct-table generated by
PRECOUNT for the entire database. This observation sug-
gests that the reason why PRECOUNT does better on these
databases is that they are all generating negative ct-tables
similar in size. Recall by Equation 2 the time to generate
ct-tables depends on the size of the tables being generated.
Also recall that ONDEMAND and HYBRID perform more

operations to construct ct-tables than PRECOUNT, which
explains their greater overhead for generating the negative
ct-tables.

Limitations and Future Work
We discuss parts of the count-cache design space that we
have not covered in our experiments.

Pre-Count Variants. Instead of storing instance counts for
complete patterns, an intermediate approach is to store addi-
tional local information before model search that facilitates
post-counting. An example is tuple ID propagation (Yin
et al. 2004). The general idea of tuple ID propagation is that
instead of performing an expensive JOIN operation, for each
node and relationship type, we store the set of linked node
IDs. A table JOIN is then replaced by ID propagation. Com-
pared to the lattice pre-count approach, tuple ID propagation
scales well in the number of data columns (predicates) but
less well in the number of nodes (rows). Tuple ID propaga-
tion may be suitable for expanding the search space to in-
clude clauses with individuals since it expands the data with
individual information.

Approximate Counting may make a purely post-counting
method feasible even for large datasets. Our experiments
suggest that it would have to be orders of magnitude more
efficient than SQL JOINs for exact counts to make ONDE-
MAND competitive with PRECOUNT.

Conclusion
The key computational burden in learning SRL models
from multi-relational data is obtaining the pattern instantia-
tion counts that summarize the sufficient statistics (frequen-
cies of conjunctions of relevant predicate values). Our re-
search has investigated two approaches to caching relational
counts, before and during SRL model search. Each approach
has different implications for two counting challenges fun-
damental to relational learning: the JOIN problem (counting
with k-tuples) and the negation problem (counting with non-
existing relationships). We find that for many databases, the
most scalable solution is a hybrid approach, which uses pre-
counting to address the JOIN problem, and post-counting for
the negation problem.

References
Das, M.; Dhami, D. S.; Kunapuli, G.; Kersting, K.; and
Natarajan, S. 2019. Fast relational probabilistic inference
and learning: Approximate counting via hypergraphs. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 7816–7824.

Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. In IJCAI, 1300–
1309. Springer-Verlag.

Getoor, L.; and Taskar, B. 2007. Introduction to Statistical
Relational Learning. MIT Press.

Kersting, K.; and De Raedt, L. 2007. Bayesian Logic Pro-
gramming: Theory and Tool. In (Getoor and Taskar 2007),
chapter 10, 291–318.



Khosravi, H.; Schulte, O.; Hu, J.; and Gao, T. 2012. Learn-
ing Compact Markov Logic Networks With Decision Trees.
Machine Learning 89(3): 257–277.

Khosravi, H.; Schulte, O.; Man, T.; Xu, X.; and Bina, B.
2010. Structure Learning for Markov Logic Networks with
Many Descriptive Attributes. In AAAI, 487–493.

Kimmig, A.; Mihalkova, L.; and Getoor, L. 2014. Lifted
graphical models: a survey. Machine Learning 1–45.

Lv, Q.; Xia, X.; and Qian, P. 2012. A fast calculation of
metric scores for learning Bayesian network. International
Journal of Automation and Computing 9: 37–44. URL http:
//dx.doi.org/10.1007/s11633-012-0614-8.

Natarajan, S.; Khot, T.; Kersting, K.; Gutmann, B.; and
Shavlik, J. W. 2012. Gradient-based boosting for statisti-
cal relational learning: The relational dependency network
case. Machine Learning 86(1): 25–56.

Nickel, M.; Murphy, K.; Tresp, V.; and Gabrilovich, E.
2016. A review of relational machine learning for knowl-
edge graphs. Proceedings of the IEEE 104(1): 11–33.

Niu, F.; Ré, C.; Doan, A.; and Shavlik, J. W. 2011. Tuffy:
Scaling up Statistical Inference in Markov Logic Networks
using an RDBMS. PVLDB 4(6): 373–384.

Qian, Z.; Schulte, O.; and Sun, Y. 2014. Computing Multi-
Relational Sufficient Statistics for Large Databases. In Li, J.;
Wang, X. S.; Garofalakis, M. N.; Soboroff, I.; Suel, T.; and
Wang, M., eds., Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge
Management, CIKM 2014, Shanghai, China, November 3-
7, 2014, 1249–1258. ACM. doi:10.1145/2661829.2662010.
URL https://doi.org/10.1145/2661829.2662010.

Ravkic, I.; Ramon, J.; and Davis, J. 2015. Learning rela-
tional dependency networks in hybrid domains. Machine
Learning 100(2): 217–254.

Schulte, O.; and Gholami, S. 2017. Locally Consistent
Bayesian Network Scores for Multi-Relational Data. In
Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 2693–2700. URL \url{https:
//www.ijcai.org/proceedings/2017/0375.pdf}.
Schulte, O.; and Khosravi, H. 2012. Learning graphical
models for relational data via lattice search. Mach. Learn.
88(3): 331–368. doi:10.1007/s10994-012-5289-4. URL
https://doi.org/10.1007/s10994-012-5289-4.

Schulte, O.; and Qian, Z. 2019. FACTORBASE: multi-
relational structure learning with SQL all the way. Int. J.
Data Sci. Anal. 7(4): 289–309. doi:10.1007/s41060-018-
0130-1. URL https://doi.org/10.1007/s41060-018-0130-1.

Schulte, O.; Qian, Z.; Kirkpatrick, A. E.; Yin, X.; and
Sun, Y. 2016. Fast learning of relational dependency net-
works. Machine Learning 1–30. ISSN 1573-0565. doi:10.
1007/s10994-016-5557-9. URL http://dx.doi.org/10.1007/
s10994-016-5557-9.

The Tetrad Group. 2008. The Tetrad Project.
Http://www.phil.cmu.edu/projects/tetrad/.

Tsamardinos, I.; Brown, L. E.; and Aliferis, C. F. 2006. The
Max-Min Hill-Climbing Bayesian Network Structure Learn-
ing Algorithm. Machine Learning 65(1): 31–78.
Yin, X.; Han, J.; Yang, J.; and Yu, P. S. 2004. CrossMine:
Efficient Classification Across Multiple Database Relations.
In ICDE.


