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Abstract

We consider the problem of learning distance-based Graph
Convolutional Networks (GCNs) for relational data. Specifi-
cally, we first embed the original graph into the Euclidean
space R™ using a relational density estimation technique
thereby constructing a secondary Euclidean graph. The graph
vertices correspond to the target triples and edges denote the
Euclidean distances between the target triples. We emphasize
the importance of learning the secondary Euclidean graph and
the advantages of employing a distance matrix over the typ-
ically used adjacency matrix. Our comprehensive empirical
evaluation demonstrates the superiority of our approach over
12 different GCN models, relational embedding techniques
and rule learning techniques.

Introduction

Statistical Relational Learning (SRL) (Getoor and Taskar
2007; Raedt et al. 2016) combines the power of probabilistic
models to handle uncertainty with the ability of relational
models to faithfully capture the rich domain structure. One
of the key successes of these models lie in the task of knowl-
edge base population, specifically, link prediction and node
classification. While successful, most methods make several
simplifying assumptions — presence of supervision in the
form of labels, closed-world assumption, presence of only
binary relations and most importantly, in many cases, the
presence of hand-crafted domain rules.

We go beyond these assumptions and inspired by the recent
success of Graph Convolutional Networks (GCNs) (Deffer-
rard, Bresson, and Vandergheynst 2016; Kipf and Welling
2017), develop a new framework for relational GCNs. This
framework has two key steps: (1) create a secondary Eu-
clidean graph from the original graph by learning rules from
one-class data, i.e., from the positive and negative annota-
tions of the target relation separately. The next step is to
convert these rules into observed features i.e., instantiates
and counts the number of times the rules fire and computes
the distance matrix, and (2) finally, it frains a GCN using the
observed features and the distance matrix. For the first step,
our method employs a one-class density estimation method
that employs a tree-based distance metric to learn relational
rules iteratively. Hence, we call the framework as Relational
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Density Distance-based GCN (RD?>GCN). Since the two dif-
ferent steps of learning the relational rules and training the
GCN employ the same set of positive examples, a richer rep-
resentation of the combination of the attributes, entities and
their relations is obtained. While previous methods used the
features as the observed layer, RD2GCN uses the rules as the
observed layer. This has the added advantage of the latent
layer being richer — it combines the instantiations of first-
order rules themselves allowing for a richer representation.
We hypothesize and show empirically that this is specifically
useful when employed on link prediction tasks. Although
work exists on generating similarity graphs using GNNs (Bai
et al. 2018, 2019; Li et al. 2019), ours is the first method to
use GCNs on induced similarities graphs allowing for use of
richer features.

We make a few key contributions: (1) We develop the
first relational GCN capable of utilizing the different densi-
ties of the data separately. (2) Going beyond using carefully
designed hand-crafted rules, our method learns rules automat-
ically to construct a secondary graph and constructs the GCN.
These two steps are conditioned on the required task and
allow for a better classifier and thus can learn with smaller
data. (3) RD?GCN can handle arbitrary relations — not simple
binary relations that most methods use. Given that our base
learner employs a logic learner, the relations can be n—ary.
(4) We show the advantages of using distance matrices and
Euclidean distance to construct the distance matrix. Our eval-
uation across 12 different baselines and 3 different data
sets clearly demonstrates the effectiveness of RD?GCN.

Background and Related work

Notations: A (logical) predicate is of the form
R(t1,...,tx) where R is a relation and the argu-
ments t; are entities. A substitution is of the form
0 = {{(,...,lg)/{t1,...,tx)} where ;s are logical
variables and t;s are terms. A grounding of a predicate
with variables lq,...,l; is a substitution {{ly,...,0x)/
(L1, ..., Lg)}! mapping each of its variables to a constant
in the domain of that variable. A knowledge base B consists
of (1) entities: a finite domain of objects O, (2) relations: a
set of predicates describing the attributes and relationships

"We use uppercase for relations/groundings and lowercase for
variables.



between objects € O, and (3) an interpretation assigning a
truth value to every grounding.

Relational Density Estimation: A common issue in many
real-world relational knowledge bases is that only true in-
stances of any relation(s) are labeled while the false instances
are not explicitly identified. Consequently closed-world as-
sumption is applied to sample negative instances. While rea-
sonable, this is a strong assumption particularly when the
number of positively labeled examples < negatively labeled
examples. In the relational one-class classification (Khot,
Natarajan, and Shavlik 2014) method, given a set of labeled
examples, a distance measure is used to perform one-class
classification, which involves two levels of combinations:
tree-level due to learning multiple trees and instance-level due
to the predicates containing variables and different instances
for each target. For example, in learning advisedBy(S,P) the
first tree could consider the courses and the second could
consider the publications. The tree-level combining func-
tion combines the results from these two trees. Now the
student could potentially publish several papers, or regis-
ter in multiple courses and inside each tree, these different
instances are combined using the instance level combining
function (Jaeger 2007; Natarajan et al. 2008). In the tree-
level distance computation, the distance between the current
unlabeled example w is calculated from a labeled example
in all the learned first-order trees. Now the final distance
is simply the weighted combination of the individual tree-
level distances: D(l1, w) =Y, f; d;(l1,u) where f3; is the
weight of the i*" tree and > B = 1,B; > 0. These tree
distances are then combined to get an overall distance be-
tween the current example and all the labeled examples [,
E(u ¢ class) = > ; a;D(lj, u), where o is the weight
of the labeled example [; and > a; = 1,5 > 0.

Knowledge Graph Embeddings (KGEs): Recently, sev-
eral successful methods for learning embeddings of large
knowledge bases have been developed (Wang et al. 2017;
Cai, Zheng, and Chang 2018). Several of these approaches
such as TransE (Bordes et al. 2013), TransH (Wang et al.
2014), TransG (Xiao, Huang, and Zhu 2016) and KG2E (He
et al. 2015), to name a few, can be grouped into translational
distance models that focus on minimizing a distance based
function under some constraints or using regularizing fac-
tors between entities and relations. More recent approaches
extend these translation approaches by embedding the knowl-
edge graphs into more complex spaces such as the hyperbolic
space (Balazevic, Allen, and Hospedales 2019; Kolyvakis,
Kalousis, and Kiritsis 2019) and the hypercomplex space
(Zhang et al. 2019; Sun et al. 2019). Another important class
of approaches such as RESCAL (Nickel, Tresp, and Kriegel
2011), DistMult (Yang et al. 2015), TuckER (Balazevi¢,
Allen, and Hospedales 2019b), HypER (Balazevi¢, Allen,
and Hospedales 2019a) and HolE (Nickel, Rosasco, and Pog-
gio 2016) focus on various compositional operators for the
entities and relations in the knowledge graph.

Graph Convolutional Networks (GCNs): Graph Convo-
lutional Networks (GCNs) (Kipf and Welling 2017) general-
ize convolutional neural network models to graph-structured
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Figure 1: Difference between GCN (Kipf and Welling 2017)
and our method with an example input graph. Here, CA is the
CoAuthor relation to be predicted. The relational rule matrix
is obtained by counting the number of satisfied groundings
of the obtained first-order rules (R; - R,,) wrt the query
variables and is a richer representation of the graph structure.

data sets where each convolution layer in the GCN applies
a graph convolution i.e. a spectral filtering of the graph sig-
nal (the feature matrix of the graph) via the Graph Fourier
Transform. The main reason behind the success of GCNs is
that they exploit two key types of information: node feature
descriptions (z;) and node neighborhood structure (captured
through the adjacency matrix A of the graph). While suc-
cessful, GCNs cannot directly be applied on multi-relational
data/networks and require propositionalization techniques.
Consequently, relational GCNs (Schlichtkrull et al. 2018)
construct a latent representation of the entities explicitly and
a tensor factorization then exploits these representations for
the prediction tasks. We take an alternative approach based
on a successful SRL approach (Khot, Natarajan, and Shavlik
2014; Lao and Cohen 2010) to develop novel combinations
of the entities and their relationships to construct richer latent
representations. As we demonstrate empirically, this leads
to superior predictive performance. In addition, the use of
relational rules as the observed layer of the GCN makes them
more interpretable/explainable than the tensor factorization
approach.

Relational Density Distance-based GCNs

Direct application of GCNs cannot fully exploit the inherent
structures inside a multi-relational graph. Consequently, they
need significant engineering to construct the propositional-
ized features. Motivated by this, we propose a principled
extension to the GCN that models large multi-relational net-
works faithfully. While a recent work R-GCN (Schlichtkrull
et al. 2018) extends GCNs to relational domains, it is still
limited to graphs represented as (subject; predicate; object)
triples and requires multiple adjacency matrices for handling
multi-relational data. We propose a novel and a more general
approach that is not limited by assumptions about the multi-
relationality of the data and can handle general multi-graphs
and hypergraphs without loss of information. We can now
formally define our model and its components.

Definition 1 (Secondary Euclidean Graph). A secondary
Euclidean graph consists of a set of vertices and edges where
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Figure 2: Relational Rule Matrix A and Distance Matrix
D construction for RD?GCN. First-order rules are learned
from the given knowledge bases which are then grounded
and satisfied groundings are counted to form X.

the vertices correspond to the query variable in the relational
data set and the edges constitute the Euclidean distance
between each pair of vertices.

Definition 2 (RD2GCN). Given a knowledge base/rela-
tional graph B and a function ¢ : B — R™, such that ¢(B)
= ¢ € R™, RD>*GCN & is a graph convolutional network
defined over € and Euc(€) ie. the secondary Euclidean
graph.

Definition 3 (Relational Rule Matrix). A relational rule
matrix X contains the node feature descriptors x; € € for a
Euclidean graph.

Definition 4 (Distance Matrix). A distance matrix D con-
tains the euclidean distances between the node feature de-
scriptors € X such that Euc(€) € D.

Given a knowledge base B, we first learn a set of first-
order rules that captures the relations between the domain
predicates. The intuition is that these first-order rules can
be viewed as higher-order features that connect entities and
their attributes. Particularly, when learned for a specific clas-
sification task, these features can be both predictive and
informative. Given that they are typically conjunctions of
relational features (attributes of entities and relationships),
they have the added advantage of being interpretable. Our
hypothesis, that we verify empirically is that these rules can
potentially yield richer latent representations than a relational
GCN that simply uses the entity and relationship information.

Our key contribution is a two-step process of constructing
the link prediction problem as a prediction problem in a
secondary Euclidean graph where vertices correspond to
target triple rather than individual entities. We learn a
relational rule matrix and then build a distance matrix to
use for GCN-computations (see Figure 1).

Embedding Original Graph to R"*: Creating a
Euclidean Graph

We now outline the required steps to embed the original graph
to a Euclidean space R™ thereby creating a secondary Eu-
clidean graph. The nodes of the Euclidean graph consists of
the target triple with the node features forming the relational
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Figure 3: Learning secondary Euclidean graph (nodes) for
ICML data set. Learning the +ve and -ve rules and thus
features separately result in more discriminative secondary
graph nodes with the +ve nodes closer to each other and
distant from the -ve node.

rule matrix X and the edges connecting the nodes are the
Euclidean distances thus forming the distance matrix D. It is
clear from def. 1-4 that we just need &’ and D to represent a
secondary Euclidean graph. Figure 2 shows the construction
of X and D.

Step 1: Rule Learning using Density Estimation: In-
spired by the success of learning only from positive examples
in relational domains (Khot, Natarajan, and Shavlik 2014),
we learn first-order rules using relational density estimation
(which forms ¢ in def 2) and learn from both the positive
and negative examples separately. The intuition behind us-
ing a density estimation method is that learning first-order
rules for positive and sampled negative examples indepen-
dently can result in better utilization of the search space
thereby (potentially) learning more discriminative features.
Figure 3 shows an example of learning such discriminative
features for a “Co-Author” data set. The density estimation
approach uses a tree-based distance measure that iteratively
introduces newer features (as short rules) that covers more
positive examples.

Thus, we construct a relational graph manifold, by treating
relational examples as nodes and connect ones that are close
or similar to each other in the neighborhood. The similarity
can be measured by learning a tree-based distance between
relational examples and is inversely proportional to the depth
d of least common ancestor (LCA) of the pair of examples,
say 1, lo being considered,

0, LCA(l4, I2) is leaf;
d(l1,12) = { —A-depth(LCA(l1,12)) :
e *2)) - otherwise,

(D
where A > 0 ensures that distance decreases (i.e., similarity
increases) as the depth increases.

We learn a tree-based distance iteratively to introduce new
relational features that perform one-class classification. The
left-most path in each relational tree is a conjunction of pred-
icates, that is, a clause, which can be used as a relational
feature. The splitting criteria is the squared error over the ex-
amples and the goal is to minimize squared error in each node.
We consider only the left-most path of every tree constructed



due to the fact that the right paths all involve negations. Thus
a single rule is extracted from each tree. The final set of
“trees” is simply a list of “first-order rules” and thus are in-
terpretable and explainable. We now present some example
first order rules learned by density estimation for 2 of our
considered data sets. The first two rules for each data set are
learnt for the positive examples and the next two are learnt
for negative examples.

Data set: Drug-Drug Interactions

1. Rule: Interacts(d;, d;) = TransporterSubstrate(ds,

try) A TransporterSubstrate(ds, tri) A
Enzymelnhibitor(d;, e;) A  Enzymelnhibitor(ds,
e1)

2. Rule: Interacts(d;, do) = Enzymelnducer(d;, e1) A
EnzymeSubstrate(ds, e;) A Enzymelnducer(ds, e2) A
Enzymelnducer(d;, e2)

3. Rule: Interacts(dy, do) = Targetlnhibitor(dy, t1) A
TargetInhibitor(ds, t2) A TransporterSubstrate(d, tr1)

4. Rule: Interacts(d;, d;) = TargetAgonist(dy, t1) A
TargetAgonist(de, t2) A Transpor
terInducer(d;, tr1) A TransporterInducer(ds, trs)

Data set: ICML CoAuthor

1. Rule: CoAuthor(p,, p2) = Affiliation(py, a1) A
Affiliation(ps, a1) A ResearchTopic(pi, topici) A
ResearchTopic(ps, topicy)

2. Rule: CoAuthor(py, p2) —>  ResearchTopic(ps,
“Mathematical_Optimization”) A ResearchTopic(py,
“Pattern_Recognition”) A ResearchTopic(p;,topicy)
A
ResearchTopic(pa,topicy)

3. Rule: CoAuthor(py, p2) = ResearchTopic(ps,
“Pattern_Recognition”) A Research
Topic(ps, “Mathematical _Optimization”)

4. Rule: CoAuthor(p1, p2) = Affiliation(pq,
“University_of _California_Berkeley”) A
Affiliation(ps, “Stmons_Institute”)

Step 2: Relational Rule Matrix and Distance Ma-
trix Construction: The learned first-order rules are then
grounded to obtain all the instantiations of these rules. The
counts of each feature, i.e., the count of the number of times
a target example (the coauthor relation between the target
entities) is satisfied in every first-order rule is obtained which
forms our relational rule matrix X. In spirit, this is similar
to MLNs (Richardson and Domingos 2006) that counts the
instances to obtain a marginal distribution. Instead of using
the counts to compute marginals, we use them in the matrices.

For example, the learned first-order rule from true instances

CoAuthor(person;, person,) <
Affiliation(person;,universityy)
AAffiliation(person,,university;)
AResearchTopic(person;, topicy)
AResearchTopic(person,, topicy).

implies that if two persons have the same affiliation and
their research interests lie in same topics, then they are likely
to coauthor. Suppose the given target entities are person;
= “Jane Doe” (JD) and persons = “Sam Smith”(SS). The
partially grounded first-order rule can then be written as

CoAuthor(JD, SS) «
Affiliation(JD,university;)
AAffiliation(SS,university;)
AResearchTopic(JD, topicy)
AResearchTopic(SS,topicy).

Then substitutions for all the other entities within
the first-order rule are performed and checked
whether the substituted first-order rule is satisfied in
the groundings. For example, the substitution 8 =
{{universityy, topicy) /{UCB, Artificial Intelligence)}
is  satisfied but the  substitution 0 =
{(universityy, topicy) /{UCB, Computer Networks)}
is not satisfied. Since there can be multiple values taken
by topicy that can satisfy the first-order rule, the count of
all such satisfied groundings becomes a feature value for
the target query CoAuthor (Jane Doe, Sam Smith).
Thus using this satisfiability count we obtain a feature set X’
of size n x k where n is number of target queries and k is
number of first-order rules that represent the node features.
In order to obtain the distance matrix D a pairwise euclidean
distance of all the node feature descriptors i.e. the counts
x; € X is computed. Thus, every element d;; € D,

dij = i — a5l = il + g2 = 2225 @)

Euclidean Graph GCN

The original GCN formulation (Kipf and Welling 2017) re-
quires an adjacency matrix .4 to perform the layer-wise prop-
agation. Instead of building the adjacency matrix from the
relation triples, we use the computed geometric distance ma-
trix D, which is a richer structure (Rouvray and Balaban
1979; Cvetkovic et al. 1980), and use it as an approxima-
tion to the adjacency matrix for the GCN. To obtain this
approximation, we perform the following steps:

[1]: A threshold, t, is set as the average of all the distances
(since the distance matrix is symmetric, the average is calcu-
lated from the upper-right part).

[2]: Vd;; € D, new distances are computed as dl-j =d;;/t
and cfij > 1is set as 1: a far-away case.

[3]: Since the higher values in D represent nodes that are

far as opposed to the A where the higher values i.e. 1 repre-
sents the nodes adjacent to each other, the distance between

nodes is subtracted from 1 i.e. d;; = 1—d,;. This is similar to
A with d;;= 1 representing that two nodes are connected and



d;;= 0 representing that two nodes are not connected with
the only difference being the presence of values 0 < d;; < 1
that denote the closeness of two nodes.

For a GCN with M layers, the layer wise propagation rule
for the layer [ € M can now be written as,

f(HY, D) = ao(DHOW D) 3)

where H(® is the input layer i.e. the relational rule matrix
X with HV ... H(M=1) being the hidden layers. Since we
replace A with D before the symmetric normalization and
addition of self loops, these operations are now performed
on D. The updated propagation rule is,

FHD D) = o(N= DN = HOWO) @)

such that D = D + Z where 7 is the identity matrix and
N € Ris the diagonal weighted node degree matrix of D.In
summary, we learn first-order rules from separate densities
independently, in the process constructing a secondary graph
consisting of query variable as nodes. These learned rules are
then grounded resulting in richer representation than simple
node features. For obtaining distance between target triples
to define adjacency, we use pairwise Euclidean distance. We
present rigorous empirical evaluations next.

Experimental Results

We consider 3 relational data sets for link prediction(Table 1).
ICML’18 consists of papers from ICML 2018, ICLR con-
sists of papers from ICLR (2013-2019) and the prediction
task is whether two people are coauthors for both data sets.
Both of these data sets are extracted from the Microsoft Aca-
demic Graph (MAG) (Sinha et al. 2015). DDI is a drug-drug
interaction data set (Dhami et al. 2018) and the goal is to
predict whether two drugs interact. A limitation of our work
is that we cannot handle multiple query variables without
joint learning where one could consider every relation as the
query variable in different rule learning steps to obtain em-
beddings w.r.t all relations and use them for the knowledge
base completion tasks. We leave it as a future work.

We first learn first-order logic rules using relational density
estimation (Khot, Natarajan, and Shavlik 2014) from positive
examples. The number of rules learned each for positive and
negative examples is shown in table 1.The relational rule
matrix X and the distance matrix D are then obtained. We
aim to answer the following questions:

Q1: How does our method perform on data sets that have
few examples?
Q2: Is learning a secondary graph structure useful?

Q3: Can the combination of SRL with deep models such
as GCN result in better predictive models?

Q4: How does rule learning from relational density esti-
mation compare with other rule learning methods?

Q5: What is the effect of different distance measures on
the RD?GCN performance?

Q6: How sensitive is RD?GCN to the choice of parame-
ters?

Baselines

Link Prediction: We compare RD?GCN, to 12 embedding
baselines in 3 categories.

1. Rule learning methods: Gaifman models (Niepert
2016): uses Gaifman locality principle (Gaifman 1982) to
enumerate all hand-written first-order rules within the neigh-
borhood of the target/query variables. After obtaining the
counts for the satisfied grounded handwritten rules logistic re-
gression is used for prediction. Neural-LP (Yang, Yang, and
Cohen 2017): learns first-order rules by extending the proba-
bilistic differentiable logic system TensorLog (Cohen 2016).
metapath2vec (Dong, Chawla, and Swami 2017): gener-
ates random walks with user defined meta paths and uses
a heterogeneous skip-gram model to generate embeddings.
PRAGCN: makes use of relational random walks (PRA)
(Lao and Cohen 2010) to learn the first-order rules (Kaur
et al. 2019) and obtain the features as described in our
method. The learned features are then passed on to a GCN.
Node+LinkFeat (Toutanova and Chen 2015) (N+LF): is ob-
tained by running logistic regression over the learned propo-
sitional features.

2. Relational embedding methods: ComplEx (Trouillon
et al. 2016): proposes a latent factorization approach in multi-
relational graphs. We use the ComplEx implementation in the
AmpliGraph python library?. ConvE (Dettmers et al. 2018):
uses convolutions over embeddings and fully connected lay-
ers to model interactions between input entities and rela-
tionships. We use ConvE from AmpliGraph python library.
SimplE (Kazemi and Poole 2018): adapts the concept of
Canonical Polyadic decomposition and learns two dependent
embeddings for each entity and relation to obtain a similarity
score for each triple to perform link prediction. We use the
tensorflow implementation?.

3. GCN based methods: Relational GCN (Schlichtkrull
et al. 2018): extends GCN to the relational setting. and can
handle different weighted edge types i.e. relations. It uses
a 2 step message passing technique to learn new node rep-
resentations which are then fed to a factorization method,
DistMult (Yang et al. 2015). We use the tenserflow imple-
mentation*. CompGCN (Vashishth et al. 2020): jointly em-
beds both nodes and relations in a graph and we use PyTorch
implementation”.

Results

For RD?GCN, we use a GCN with 2 hidden layers each with
dimension = 16 with a drop out layer between the 2 graph
convolutional layers. To introduce non-linearity, we use relu
between input and hidden layers and to score queries, we use
log_so ftmax function. The examples for training, valida-
tion and testing are randomly sampled without replacement.
For neural embedding baselines, since they are trained on
true relations, the positive examples are randomly split to
(60%, 10%, 30%) in training, validation and testing respec-
tively. To obtain the different metrics for the neural embed-

*https://github.com/Accenture/AmpliGraph
3https://github.com/Mehran-k/SimplE
“https://github.com/MichSchli/RelationPrediction
Shttps://github.com/malllabiisc/CompGCN



Table 1: Properties of data sets.

Task Data Set | # Relations | # Facts | #+ve Examples | #-ve Examples | # Rules
ICML’18 4 1395 155 6498 7
Link Prediction ICLR 4 4730 990 10000 7
DDI 14 1774 2832 3188 25
Table 2: Results for Link prediction. criminative machine learning algorithm (logistic regression),
_ used on top of the learned features (N+LF) performs better
Data Methods Recall | Precision F1 AUC-PR

Gaifman 0.10 0.16 0.174 0.127
Neural-LP3 0.927 0.024 0.047 0.267
Neural-LP;p | 0.891 0.035 0.069 0.143

metapath2vec | 0.836 0.209 0.335 0.286

PRAGCN 0.0 0.0 0.0 0.512

ICML’18 ComplEx 0.85 0.013 0.03 0.04
ConvE 0.636 0.01 0.02 0.015

SimplE 0.927 0.012 0.023 0.128

N+LF 0.379 1.0 0.549 0.396

R-GCN 0.636 0.07 0.13 0.13
CompGCN 0.727 0.022 0.044 0.185
RD?GCN 0.389 1.0 0.561 0.556
Gaifman 0.564 0.795 0.66 0.488
Neural-LP3 0.939 0.308 0.463 0.421
Neural-LP;p | 0.987 0.275 0.429 0.453
metapath2vec | 0.828 0.338 0.480 0.641

PRAGCN 0.0 0.0 0.0 0.544

ICLR ComplEx 0.269 0.032 0.057 0.105
ConvE 0.677 0.037 0.069 0.054

SimplE 0.973 0.054 0.102 0.535

N+LF 0.97 1.0 0.984 0.972

R-GCN 0.667 0.783 0.720 0.763
CompGCN 0.906 0.719 0.802 0.912
RD?GCN 0.594 1.0 0.745 0.972

Gaifman 0.469 0.707 0.564 0.581
Neural-LP3 0.727 0.336 0.459 0.368
Neural-LPyy | 0.779 0.338 0.472 0.403

metapath2vec | 0.782 0.652 0.711 0.707
PRAGCN 0.427 0.700 0.531 0.695

DDI ComplEx 0.832 0.492 0.618 0.705
ConvE 0.931 0.384 0.544 0.678

SimplE 0.992 0.288 0.446 0.503

N+LF 0.682 0.924 0.785 0.781

R-GCN 0.571 1.0 0.727 0.922

CompGCN 0.882 0.552 0.679 0.826
RD?GCN 0.998 0.986 0.992 0.998

ding baseline, the scores for each pair of nodes in the test
examples were thresholded by the average of the obtained
scores. If the score between pair of nodes > average score
the link is predicted to be true. We run our experiments on a
GPU with 8 GeForce GTX 1080 Ti cards.

(Q1. Smaller data sets) Table 2 shows the result of link
prediction task. Our method outperforms all the baselines
significantly in 2 of the 3 data sets with the difference being
significant in the smaller data set /[CML’18 and is comparable
in the ICLR data set. Note that although the recall is high
for the neural embedding baselines, the corresponding F1
score and AUC-PR are low which implies that the baseline
relational embedding methods have a high rate of false
positives. This clearly demonstrates that RD?GCN is signifi-
cantly better than the strong baselines for the link prediction
task. This answers Q1 affirmatively.

(Q2. Secondary graph/distance matrix impact) The
main advantage of our method is learning a secondary graph
structure where both link prediction and node classification
tasks become simple prediction tasks in this new graph. As
can be seen from the results for link prediction, a simple dis-

than the other baselines including GCN-based baselines. In
case of node classification, the results are comparable.

We also compare our method with Graph Attention Net-
works (GATs) (Velickovi¢ et al. 2018) which uses the our
learned featues with the adjacency matrix instead of a dis-
tance matrix. Figure 4 shows the results and it can be seen
that using a distance matrix is also effective. This is expected
since in the secondary structure, as the nodes show the query,
there is no particular notion of connection between the nodes.
This answers Q2 affirmatively, learning a secondary graph
structure is useful for prediction tasks.

(Q3. SRL + GCN) Our results show that using SRL mod-
els (relational density estimation in our case) as the underly-
ing feature learner which are then fed to a neural model, GCN,
gives us a powerful hybrid model that can be used seamlessly
with relational data. Using a SRL model as the initial layer
of a neural model results in learning richer initial features set
used by the neural model. This initial feature set can take ad-
vantage of underlying graph structure faithfully and thus, in
accordance, leads to the neural model learning far richer
abstract features which in turn leads to better predictive
performance. Our evaluations on both tasks support this as
our method significantly outperforms GCN baselines in all
domains, answering Q3 affirmatively. Neural SRL (neuro-
symbolic) models can be both interpretable and expressive.

(Q4. Effective rule learning) To answer Q4, we use 4
different rule learning methods: handwritten rules (Gaifman),
NeuralLP (rule length 3 & 10), metapath2vec and PRA. Ta-
ble 2 clearly demonstrate that using our density estimation
method significantly outperforms all rule learning method
across all domains. Comparing PRAGCN and RD2GCN is es-
pecially interesting since this shows that rule learning method
plays a crucial role in learning richer features, especially in
the imbalanced domains, where relational density estimation
is demonstrably beneficial since both methods share the un-
derlying GCN. The difference in performance of PRAGCN
and RD2GCN is significantly high in the highly imbalanced
domains /ICML’18 and ICLR where the features learned by
the PRA method result in all examples being classified as
negative.

(QS5. Effect of distance measures) Figure 5 presents the
effect of 2 other distance measures, Manhattan (Lq) and
Chebyshev (L), in addition to Euclidean (Ls) on the per-
formance of RD2GCN on the DDI data set. Since Euclidean
is the straight line i.e. shortest distance between nodes, it
performs the best as expected. This answers QS.

(Q6. Effect of parameter choices) To answer Q6, we
change the size of the hidden layers in the GCN as well as
the number of hidden layers and test our method on ICML’18



Table 3: Effect of change in size of hidden layers.

Data Size | Recall | Precision | F1 Score | AUC-PR

32 | 0.369 1.0 0.539 0.692
ICML’18 | 64 | 0.369 1.0 0.539 0.692
128 | 0.369 1.0 0.539 0.692

32 | 0.989 0.998 0.993 0.998
DDI 64 | 0.989 0.998 0.993 0.998
128 | 0.989 0.998 0.993 0.998

Table 4: Effect of change in # of hidden layers.

Data # | Recall | Precision | F1 Score | AUC-PR
31 0.369 1.0 0.539 0.692
ICML’18 | 4 | 0.369 1.0 0.539 0.692
5| 0.369 1.0 0.539 0.692
31 0.989 0.998 0.994 0.999
DDI 4 1.0 0.997 0.998 0.999
51 0.999 0.991 0.995 0.997

and DDI data sets. Tables 3 and 4 show that change of these
parameters have none or very minuscule effect on the overall
results. This answers Q6 and also shows that the learned
features by themselves are quite expressive thus removing
the need for a more complex GCN.

Figure 4: Comparison (AUC-  Figure 5: Effect of distance
PR) with GATs. DDI does measures on the DDI data
not run using GAT. set.

Conclusion

We presented the first GCN method that can learn from multi-
relational data utilizing the different densities separately. Our
method does not make assumptions on the supervision or
the arity of predicates and automatically constructs rules that
allow for a rich latent representation. We significantly outper-
form the recently successful methods on the link prediction
task across multiple data sets. Allowing for joint learning and
inference over multiple types of relations is an important fu-
ture direction. Using more classical rule learning techniques
such as (Quinlan 1990; Muggleton 1995; Srinivasan 2001)
is another interesting direction. Extending our framework to
node classification is the natural next step. Finally, learning
in the presence of hidden/latent data and rich human domain
knowledge is essential for deploying SRL methods in real
tasks.
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