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Abstract

DeepProbLog is a neural-symbolic framework that integrates
probabilistic logic programming and neural networks. It is
realized by providing an interface between the probabilistic
logic and the neural networks. Inference in probabilistic neural
symbolic methods is hard, since it combines logical theorem
proving with probabilistic inference and neural network evalu-
ation. In this work, we make the inference more efficient by
extending an approximate inference algorithm from the field
of statistical-relational AI. Instead of considering all possible
proofs for a certain query, the system searches for the best
proof. However, training a DeepProbLog model using approx-
imate inference introduces additional challenges, as the best
proof is unknown at the start of training which can lead to
convergence towards a local optimum. To be able to apply
DeepProbLog on larger tasks, we propose: 1) a method for
approximate inference using an A*-like search, called DPLA*
2) an exploration strategy for proving in a neural-symbolic
setting, and 3) a parametric heuristic to guide the proof search.
We empirically evaluate the performance and scalability of
the new approach, and also compare the resulting approach
to other neural-symbolic systems. The experiments show that
DPLA* achieves a speed up of up to 2-3 orders of magnitude
in some cases. 1

1 Introduction
There has been a recent surge of interest in neural symbolic
computation, the integration of neural networks with sym-
bolic reasoning, cf. the many special tracks and debates on
this topic at major conferences. Many approaches to neural
symbolic computation now exist, cf. recent surveys (Besold
et al., 2017; Garcez et al., 2019; De Raedt et al., 2020). While
most approaches focus on pushing the symbols and the knowl-
edge inside the neural network, others have argued for an
interface layer between the neural and the symbolic side
(Manhaeve et al., 2018). One such interface is built between
the probabilistic logic programming language ProbLog and
neural networks in DeepProbLog. ProbLog (Fierens et al.,
2015) belongs to the statistical relational artificial intelligence
paradigm and combines theorem proving with knowledge
compilation to perform inference and learning. It is well
known that probabilistic logic inference is computationally

1This work was previously published at KR 2021 (Manhaeve,
Marra, and De Raedt, 2021).

hard. While the statistical relational AI community has con-
tributed many approximate inference techniques, so far only
exact inference has been used for DeepProbLog.

We contribute the first approximate inference technique
for DeepProbLog, called DPLA*. It applies ideas from A*
to the SLD theorem proving of DeepProbLog to find a small
set of best proofs, which are then compiled into a circuit
for learning and inference. Which proofs are best depends
on the likelihood of these proofs, which in turn depends on
the parameters of the program. An important challenge is
to determine the best proofs while learning the parameters
themselves, as any change in parameters will have an effect
on the likelihood of the proofs. This challenge is particularly
important when neural networks come into the picture as
neural networks can perform better when their parameters are
suitably initialized (cf. the success of curriculum learning).
By using an A*-like approach, we are able to simultaneously
improve upon the heuristic that is used in theorem proving
and the parameters of the DeepProbLog model.

Our contributions are threefold: 1) we introduce an approx-
imate inference technique for DeepProbLog called DPLA*
that achives a speed-up over several magnitudes over exact
inference, 2) the application of curriculum learning and ex-
ploration to overcome the issues faced when learning with
approximate inference, and 3) a parametric heuristic for guid-
ing the proving process of the approximate inference.

2 ProbLog and DeepProbLog
Prolog Prolog is a logic programming language based on
definite clauses. These are expressions of the form h ←
b1, ..., bn where h and the bi are logical atoms2. This clause
states that h is true whenever all bi are true. When n = 0, the
clause is a fact. A substitution θ is an expression of the form
{V1 = t1, ..., Vn = tn} where the Vi are different variables
and the ti terms. Applying a substitution θ to an expression
e (term or clause) yields the instantiated expression eθ where
all variables Vi in e have been replaced by their corresponding
terms ti in e. For example, applying the substitution θ =
{X = an, Y = bob} to the term parent(X,Y ) results in

2A logical atom a(t1, ..., tn) consists of a predicate a of arity
n followed by n terms ti. Terms then are either constants, logical
variables or structured terms of the form f(t1, ..., tk) with f a
functor and the tj terms. A ground term is a term without variables.



the term parent(an, bob). Prolog’s SLD-resolution theorem
prover can be used to decide whether a ground goal, i.e., a
conjunction of atoms g1 ∧ ...∧ gn is logically entailed by the
program. Briefly put, SLD resolution works by the repeated
application of clauses to a goal. If we have a goal g1∧ ...∧gn
and a clause h← b1∧...∧bm such that h unifies with g1 with
substitution θ (i.e. the two terms can be made identical by
substituting certain variables in the terms), SLD-resolution
derives the new goal (b1 ∧ ... ∧ bm ∧ g2 ∧ ... ∧ gn)θ. This is
repeated until an empty goal is achieved, or no more rules
can be applied. For more detail on this, we refer to standard
works on logic programming (Flach, 1994).

ProbLog extends Prolog by introducing probabilistic facts
of the form p :: atom, where p is a probability and atom
is a logical atom. A probabilistic fact is true with proba-
bility p. If the atom contains variables, then all its ground
instances atomθ are true with probability p.3 Furthermore,
all the probabilistic facts are assumed to be independent from
one another. ProbLog’s inference mechanism computes the
probability of a goal g as

P (g) =
∑
M |=g

∏
f∈M

pf
∏
f 6∈M

(1− pf )

For ease of modeling, ProbLog also allows the use of anno-
tated disjunctions (ADs)

p1 :: h1; ...; pn :: hn : −b1, ...bk
with with

∑
i pi ≤ 1, which states that whenever the condi-

tion part of the rule is true, one of the hi will be true according
to the probabilities pi. If

∑
i pi < 1, then the probability that

none of the hi becomes true is equal to 1−
∑
i pi.

DeepProbLog extends ProbLog by the addition of the neu-
ral predicate. The neural predicate is defined by means of a
neural AD, i.e., an expression of the form nn(mr, I,O,D) ::
r(I,O), where mr is a neural network taking I as input and
computing O as output. Furthermore, the range of possible
outputs is specified in the (discrete) domainD = {d1, ..., dk}.
Given specific inputs i and o, the probability of the neural
predicate r(i, o) is determined as

nn(mr, i, d1) :: r(i, d1); ...;nn(mr, i, dk) :: r(i, dk)

where nn(mr, i, dj) represents the probability that the neu-
ral network outputs dj on input i. The semantics of Deep-
ProbLog reduces to that of ProbLog (but see (Manhaeve et
al., 2021)).

Example 1 (MNIST Addition). Consider the pred-
icate addition(X, Y, Z), where X and Y are images
of handwritten digits from the MNIST dataset (Le-
Cun et al., 1998), and Z is the natural number corre-
sponding to the sum of these digits. DeepProbLog
can make a probabilistic estimate on the validity of,

3A substitution θ = {V1 = t1, ..., Vn = tn} is an expression
where the Vi are logical variables and the ti are terms. Applying a
substitution θ to an expression e yields the expression eθ where all
Vi have been simultaneously replaced by the ti.

for example, addition( , , 1) using the program:

nn(m,[I],N,[0,...,9]) :: digit(I,N).
addition(I1,I2,R) :-

digit(I1,N1), digit(I2,N2),
R is N1 + N2.

The first line is a neural predicate that defines the classi-
fication of MNIST images. The subsequent lines define
the addition. The line R is N1 + N2 in essence defines
a constraint on the outputs of the neural network.

Inference in ProbLog and DeepProbLog Inference in
ProbLog is the process of calculating the probability of a
query P (q). To calculate this, we have to find the proofs for
the query q, and calculate the probability of the disjunction
of these proofs. Previously, DeepProbLog only calculated
the success probability of a query that is, the probability
of all the disjunction of all proofs. In this work, we will
consider calculating the explanation probability of a query,
namely the highest probability of any proof for the query. Al-
though ProbLog inference is usually described with respect
to grounding, it can also be described with respect to SLD-
resolution as done in the original paper (De Raedt, Kimmig,
and Toivonen, 2007).

Inference for computing the probability P (q) for both
ProbLog and DeepProbLog happens in several steps.

1. Proving step: During the proving procedure, the set of all
proofs S(q) for the query q is computed. The proofs are
computed using SLD resolution. Without negation, each
proof can be considered a conjunction of probabilistic and
neural facts.

2. Rewrite step: The proofs are turned into a logical expres-
sion

∨
s∈S(g)

∧
pf∈s pf where pf is a probabilistic fact or

neural fact used in proof s.

3. Knowledge compilation: Computing P (q) directly on
this formula is not efficient. That’s why techniques from
knowledge compilation (Darwiche and Marquis, 2002) are
used, which turns the formula into a structure that allows
for efficient evaluation.

4. Arithmetic circuit evaluation: The compiled structure
can be trivially turned into an arithmetic circuit where the
leafs (probabilistic and neural facts) are connected using
additions and multiplications. P (q) is then computed by
evaluating the neural networks to calculate the probability
of the neural facts, and a subsequent bottom-up evaluation
of the arithmetic circuit.

Example 2 (MNIST Addition). We evaluate
P (addition( , , 1)) from Example 1. The
SLD-tree for this query is shown in Figure 1. The
ground logical expression produced in the second step
is (digit( , 0) ∧ digit( , 1)) ∨ (digit( , 1) ∧
digit( , 0)). The arithmetic circuit produced after
knowledge compilation is shown in Figure 2.



:-addition(  ,  ,1)

:-digit(  ,N1), digit(  ,N2), 1 is N1+N2

:-digit(  ,N2), 1 is 0+N2 :-digit(  ,N2), 1 is 1+N2

:-1 is 0+0 :-1 is 0+1

true

:-1 is 1+0

true

Figure 1: The SLD-tree for query addition( , , 1). Triangles
represent branches omitted for brevity.
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Figure 2: The arithmetic circuit for query addition( , , 1).
Figure adapted from Manhaeve et al. (2021).

Learning in ProbLog and DeepProbLog Learning in
DeepProblog follows the learning from entailment set-
ting(Frazier and Pitt, 1993). Given a DeepProbLog program
with parameters Θ, a set Q of tuples (q,X , p) with q a query,
X the neural input for this query and p its desired success
probability, and a loss function L, learning from entailment
computes

argminΘ

1

|Q|
∑

(q,X ,p)∈Q

L(P (q|X ,Θ), p)

ProbLog and DeepProbLog can estimate the parameters of
the probabilistic facts, the neural predicates and the underly-
ing neural networks using gradient descent. This happens in
two steps. In the first step, the gradient is propagated to the
leaves of the logical circuit, and in the second step these gra-
dients are propagated to the weights in the neural network4.
In this work, DeepProbLog uses cross-entropy as the loss
function.

Note that, for most tasks, the supervision is not on the
level of the neural predicate, so the neural networks cannot

4Technically this is done using semi-rings and algebraic
ProbLog, see (Kimmig, Van den Broeck, and De Raedt, 2011).

be directly trained. In the case of the MNIST addition, there
are only supervised examples for the addition, and not for the
individual digits. These neural predicates however are often
classifiers themselves, and it will be useful for the remainder
of this work to consider the neural predicate accuracy. This
is the accuracy of the neural predicate alone, measured on
a relevant dataset (e.g., for the MNIST addition task, neural
predicate accuracy is defined on the MNIST test dataset).

3 Approximate Inference
There are essentially two computational problems in
(Deep)ProbLog inference. First, one needs to compute the set
of all ground proofs, and secondly, one needs to compile the
resulting ground logical formula into an arithmetic circuit. It
is well-known that for some domains the number of possible
ground proofs can explode, and also that knowledge compila-
tion is computationally hard (Darwiche and Marquis, 2002).
This has inspired various approximate inference techniques
for probabilistic logic programming. Especially relevant are
the techniques that do not compute the full set of proofs but
focus on a subset of the proofs (Renkens, Van den Broeck,
and Nijssen, 2012; De Raedt, Kimmig, and Toivonen, 2007),
e.g., the k-best proofs. If fewer proofs are used then compi-
lation also becomes simplified and faster. In this work, we
will optimize the parameters in the model with only the high-
est probability proof (cf. Viterbi training (Jelinek, 1976)),
which is equivalent to optimizing the explanation probability
instead of the success probability for our query. The method
discussed here will only be used to find the best proof, but it
also capable of finding the k best proofs, or even all proofs. In
this work, we will only consider programs without negation.
Below, we introduce our approximate inference method for
DeepProbLog, called DPLA*.

3.1 Heuristically Searching the SLD-Tree
The core component of DPLA* is an A*-based search in the
SLD tree for the best proof. The standard SLD-resolution pro-
cedure used in Prolog and ProbLog searches the tree depth-
first, left-to-right. An SLD-tree is illustrated in Figure 1 for
the program from Example 1. Each node in this SLD tree
represents a partial proof. The path from the root to the node
captures what has already been proven, and the node itself
contains the remaining part of the goal that still needs to be
proven. As we are only interested in the probabilistic and
neural facts in the proof, we define partial proofs as follows:
Definition 3.1. A partial proof is a pair E = (Ef , Eg). Ef is
the conjunction of ground probabilistic or neural facts that
have already been used in the proof, and Eg denotes the goal
that still needs to be proven.

If Eg contains no literals, then E represents a complete
proof and contains the set of ground probabilistic or neural
facts used in the proof. A query q corresponds to a partial
proof E = (∅, q). The probability of a partial proof is defined
as

P (E) = P (
∧
f∈Ef

f
∧
g∈Eg

g)

For example, a partial proof encountered while prov-
ing the query addition( , , 1) in Example 1 could



be E = ({digit( , 0)}, {digit( , N2), 1 is 0 + N2}).
This means that we have already derived that the first im-
age represents the number 0 and we still need to find which
number N2 is represented by the second image so that the
two numbers sum to 1.

A* Search The heuristic that we will use is an estimate of
of the probability of a partial proof E . This can be factorized
as

P (E) =

 ∏
f∈Ef

P (f)

P (
∧
g∈Eg

g |
∧
f∈Ef

f)

By taking the negative logarithm of this we get the formu-
lation for the value function as used in A*, namely

f-value(E) = cost(E) + h(E)

with:

cost(E) = − log

 ∏
f∈Ef

P (f)


h(E) = − logH(E) ≈ − logP (

∧
g∈Eg

g|
∧
f∈Ef

f)

It will be convenient to define h(E) as − logH(E). To
have an admissible heuristic, h(E) should never overes-
timate − logP (

∧
g∈Eg g|

∧
f∈Ef f), or equivalently H(E)

should never underestimate P (
∧
g∈Eg g|

∧
f∈Ef f). If A*

uses an admissible heuristic, it is guaranteed to find the
best result, which is the proof with the highest probabil-
ity. It’s easy to see that H(E) = 1 is an admissible
heuristic. If the heuristic, is not admissible, than we do
not have this guarantee, and in general will only be able
to approximate the explanation probability. (Pearl, 1984)
shows that if the overestimation of the heuristic is bounded
h(E) −

[
− logP (

∧
g∈Eg g|

∧
f∈Ef f)

]
≤ ε, then the dif-

ference between the result and the optimal solution is also
bounded: [− logP (E)] − [− logP (E∗)] ≤ ε′ , with P (E∗)
the explanation probability and P (E) the probability of the
proof found by the search. Rewriting this from negative
log probabilities to probabilities, for ε = e−ε

′
, we have:

P (E) ≥ εP (E∗).

3.2 Constant Heuristic
We define the constant heuristic asHc(E) = c. If c = 1, then
the search becomes uniform-cost search (UCS), and it will
always find the optimal solution, but it might traverse more
nodes than a better informed heuristic. Uniform-cost search is
equivalent to the k-best method as explored in previous work
for approximate inference in ProbLog (Renkens, Van den
Broeck, and Nijssen, 2012; De Raedt, Kimmig, and Toivonen,
2007).

3.3 Geometric Mean Heuristic
We consider an improvement over the constant heuristic for a
specific case that occurs often in the neural-symbolic setting,
namely that when the neural networks is completely correct

and confident, the success probability is equal to the expla-
nation probability. This is the case when there is only one
correct proof, and all other proofs have a 0 probability. In
many neural symbolic tasks, there is only one correct proof
for each query. This is clear in the example of the MNIST ad-
dition. There are 9 proof for the query addition( , , 9),
but only the proof digit( , 4) ∧ digit( , 5) is correct
and should carry all of the probability mass, while all other
proofs have a probability of zero. The same reasoning holds
for many other neural-symbolic tasks. To define this heuris-
tic, we re-write P (E) =

∏
f∈Ef∗ P (f) = µ∗N , where Ef∗

is the set facts in the complete proof, µ∗ the geometric mean
of their probabilities and N = |Ef∗|. When n = |Ef |, we
can write P (E) = µ∗nµ∗N−n. Let us assume that the ge-
ometric mean µ∗ of the probabilities of the facts in Ef∗ is
close to the geometric mean µ in Ef . This assumption holds
when P (f) ≈ µ for all f ∈ Ef∗, or, equivalently, when the
variance of the log probabilities of all the facts in the proof
Ef is small. The geometric mean is chosen over the arith-
metic mean, as the probabilities of individual facts are not
summed, but multiplied. Under this assumption, we define
the geometric mean heuristic as Hg(E) = µN−n. Note that
the f-value for each node is µnµN−n = µN . If we assume N
is the same for all proofs we do not have to know N . We can
replace the f-value by µ as xN is monotonically increasing
in [0, 1].

4 Approximate Learning
Learning with approximate inference in the neural symbolic
setting holds additional challenges. The main challenge is
that DPLA* only uses the best proof, but the selection of the
best proof is based on the probabilities of facts and neural
predicates in the program. At the start of learning, these
probabilities are not correct, so the danger is that the selected
proof is not correct. This prevents DPLA* from correctly
training the neural networks. There are two ways to over-
come this issue. The first is to use curriculum learning to
make sure that the accuracy of the neural predicates is better
than random. This implies that the correct proofs will be
selected more often than the wrong proofs, which allows the
neural predicates to be trained. The second way to do this is
to incorporate a form of exploration. If diversity in the proofs
is not enforced, depending on the initialization, DPLA* can
get stuck in a local optimum as no correct proofs are selected,
preventing the neural predicates from being trained. Explo-
ration can make sure that, regardless of the initialization, the
proofs are sufficiently diverse so that he neural networks are
able to identify the patterns only present in the correct proofs
and are able to learn from these.

4.1 Curriculum Learning
Due to the flexibility of the DeepProbLog framework, curricu-
lum learning is a very natural setting. Consider the multi-digit
MNIST addition experiment. Training on long sequences of
digits is hard, as the number of proofs grows rapidly. This
means that exact inference quickly becomes infeasible. Ap-
proximate inference without any pre-initialization would also
struggle as it is hard to determine the correct proof for the



given sum. One solution is to incorporate a few examples
of shorter sequences. Alternatively, one can provide a few
labeled examples for the neural predicate. Because of the
flexibility of DeepProbLog as a programming language, no
changes to the model have to be made to allow for this form
of curriculum learning. For example, in the addition pro-
gram, one could directly maximize the probability of a few
digit facts, like digit( , 1) or digit( , 6). While in
general it is not hard to collect a few labeled examples, they
are valuable to initialize the neural predicates to guide the
approximate inference.

4.2 Exploration
To include exploration in the algorithm, we borrow an idea
from reinforcement learning, namely the upper confidence
bound (UCB) (Lai and Robbins, 1985), which has been used
in techniques such as Monte Carlo tree search. UCB assumes
rewards in the interval [0, 1], so it is appropriate for probabil-
ities. In UCB, actions are selected based on their observed

mean reward and an additional exploration term
√

log(p)
2Na

where p is an additional parameter controlling the amount
of exploration (often taken to be t−4), t is the total number
of actions taken and Na is the number of times action a was
selected. The problem with learning using approximate infer-
ence is that when neural networks are initialized with a slight
preference for one output, the proof containing that output
will be selected more often. Due to the optimization, the
neural network will be trained towards this output even more,
which may lead to converging to a local optimum. To encour-
age exploration in the proof selection, we augment cost(E)
with an additional UCB term for each neural predicate:

cost(E) = − log

 ∏
f∈Ef

P (f) + PUCB(f)− P (f)PUCB(f)


where PUCB(f) = min(1,

√
2 log(Nr)

Nj
r

) if f = r(i1, ..., in) is

a neural predicate, and 0 otherwise. Here, N j
r is the number

of times output j for neural predicate r was selected during
the proving throughout the training process andNr is the sum
of all such N j

r . As we treat these quantities as probabilities,
we use the general disjunction rule instead of addition.

5 Parametric Heuristics
The goal of the parametric heuristic is to predict the proba-
bility of certain goals before they are proven. With the right
predictions, the proving will be guided towards the correct
proofs. This will not only speed up inference, but will also
make training more efficient as fewer wrong proofs will be
considered. This idea is similar to that of neurally-guided the-
orem proving (Wang et al., 2017; Rawson and Reger, 2019).

To implement a parametric heuristic, we assume that the
probability of a goal is independent of other goals and the
probabilistic facts in the partial proof. This allows us to
factorize the probability of the partial proof as

P (E) =
∏
f∈Ef

P (f)
∏
g∈Eg

P (g)

. Under this assumption, we can also factorize the heuristic
H(E) =

∏
g∈Eg H(g). This factorization allows us to esti-

mate P (g) for every goal separately. If this assumption does
not hold, then

∏
g∈Eg P (g) < P (

∧
g∈Eg g |

∧
f∈Ef f) and

the heuristic will be a worse underestimation. The goals for
which we should calculate such a heuristic is problem depen-
dent, which is why we define a subsetR of all the predicates
in the program for which a heuristic should be estimated. We
define the heuristic as Hn(r(i1, ..., in)) = fr(i1, ..., in) if
r ∈ R, and 1 otherwise. fr is an external implementation
provided to the framework (e.g. a neural network).

Training the Parametric Heuristic The advantage of us-
ing a parametric heuristic is that its parameters can be trained
to fit the properties of a specific task. Training parametric
heuristics is a common technique in neurally-guided theo-
rem proving, where the heuristic is pre-trained on data of
known proofs. However, in this setting, the proofs found in
the training procedure cannot be used as supervision, as these
can be wrong or may not yield the correct probability due to
the inaccuracy of neural predicates. To overcome this issue
we use a different approach. In order to train the parametric
heuristic in parallel with the neural predicates, we optimize
in parallel an equivalent DeepProbLog program where all
definitions of predicate r(i1, ..., in) are replaced by a neural
predicate representing the heuristic. The idea here is that
we train the heuristic as shortcuts in the proving procedure.
While the heuristic needs to solve a harder, higher-level task,
it does not have to be perfectly trained as it will be used only
as a heuristic during the actual search and doesn’t affect the
probability of the selected proof.

Example 3 (Neural Heuristics). Consider the follow-
ing program. It represents a multi-instance setting of
the MNIST addition example.

nn(m,[I],N,[0,...,9]) :: digit(I,N).
addition(I1,I2,R) :-

digit(I1,N1), digit(I2,N2),
R is N1+N2.

mil_addition(Bag,R) :-
member([I1,I2],Bag),
addition(I1,I2,R).

mil_addition([[ , ], [ , ]], 7) is true if any
of the pairs in the outer list sums to 7. We could use a
heuristic on the addition predicate that can estimate if
the sum holds for a given input pair. This will be able to
guide the heuristic towards the pair in the bag that are
most likely to have the correct sum. To train the neural
heuristic, we train the following DeepProbLog program
instead:

nn(h,[I1,I2],R,[0,...,18]) :: h_addition
(I1,I2,R).

mil_addition(Bag,R) :-
member([I1,I2],Bag),
h_addition(I1,I2,R).



6 Experiments
The goal of our experiments is to investigate whether DPLA*
can be applied to tasks that are intractable for exact inference
in DeepProbLog. We will compare the DPLA* with different
heuristics to DeepProbLog with exact inference and other
neural-symbolic frameworks. Our questions are grouped in
three topics: approximate inference, approximate learning
and parametric heuristics.

First, we will look at how approximate inference, the
heuristics and neural predicate accuracy interact. We hy-
pothesize that approximate inference will outperform exact
inference, but that its performance depends on the heuristic
and the neural predicate accuracy. We will verify that by
answering the following questions.
Q1.1 How does approximate inference compare to exact

inference and related frameworks in terms of speed?
Q1.2 How do the different heuristics compare to each other?
Q1.3 What is the impact of neural predicate accuracy on

the inference speed of the approximate inference?
Performing learning with approximate inference has potential
complications. The proving process is guided by the proba-
bilities which are the output of the neural networks, which
are themselves being trained. This can lead to issues where
the correct proofs are not selected and the system converges
to a local optimum. We answer the following questions.

Q2.1 What is the influence of approximate inference on the
accuracy and convergence of the learning?

Q2.2 How does curriculum learning impact the perfor-
mance of the different heuristics?

Q2.3 What is the impact of exploration on the learning
process?

Finally, we will also investigate how a parametric heuristic
influences inference and learning. We answer the following
questions.

Q3.1 Can parametric heuristics be used to guide the proving
process?

Q3.2 Can parametric heuristics be learned in conjunction
with the neural predicates?

6.1 Tasks
In order to answer these questions, we will use four datasets,
each of them coupled with a different neural symbolic task.
A common feature of all the tasks is that they require to
symbolically reason on sub-symbolic representations (either
images or natural language sentences).

MNIST Addition The MNIST addition example has been
introduced in the original DeepProbLog paper (Manhaeve
et al., 2018). The task is to predict the sum of two integer
numbers represented as two sequences of MNIST images, e.g.
[ , ]+[ , ] = 49. During training, we are not provided
with any direct supervision for the images but, only the sum
of the numbers they represent. The dataset is composed
of 60000 images and 60000

2N pairs. Each pair contains two
equally long sequences of length N. For this task, N varies
from 1 to 5.

Multi-Instance Learning MNIST Addition Here, we in-
troduce a new task that is an extension of the MNIST Addition
task. The difference is that it is extended to a multi-instance
learning task. Several pairs are combined in a bag, and the
bag is labeled with a sum randomly selected out of all the
pairs in the bag. Example: ( + = 7) ∨ ( + = 7).
The goal of this task is being able to train the neural pred-
icates to recognize MNIST digits using the weak training
signal provided by the multi-instance learning setting. This
task is interesting as it investigates the multi-instance learn-
ing setting, but also because large parts of the proof space are
irrelevant as only a few items from each bag are interesting.
A well-informed proving algorithm should be able to lever-
age this sparsity and avoid unnecessary work on proving and
neural network evaluation.

Hand-written Formulas (HWF) The Handwritten For-
mula (HWF) dataset was introduced in Li et al. (2020). The
task is to predict the result of an expression represented as
a sequence of images. Each image represents either a digit
or an operator(+,−,×,÷). An example of an expression
is: . As for the addition, no supervision is
provided on the single images, but only the result of the
expression is provided. We do not consider the curriculum
learning setting for this task (i.e., we train and test only on
expressions of exactly length N)

CLUTRR The CLUTRR dataset was proposed in (Sinha
et al., 2019). Each example is a natural language sentence
describing a kinship graph of variable size. The goal is to
deduce a family relation between two nodes of the graph.
The query relation is not directly mentioned in the text but
can be deduced by chaining relations mentioned in the text.
The setting we consider here is slightly different than the
original. Instead, we consider the setting as used in Manhaeve
et al. (2021), where the rules describing family relations
are specified as background knowledge, and the task is to
train neural networks to extract the relations from the natural
language sentences.

6.2 Baselines
We compare the proposed approach with two neural-symbolic
systems.

NeurASP: NeurASP (Yang, Ishay, and Lee, 2020) inherits
neural predicates from DeepProbLog but they are used to
extend Answer Set Programming instead of ProbLog. While
being an approach to exact inference in probabilistic logic
programming, NeurASP was showed to be a more efficient
implementation than the original DeepProbLog paper in some
tasks.

NGS: Neural-Grammar-Symbolic (NGS) (Li et al., 2020)
combines grammar parsing with neural networks at the level
of terminal symbols, which resembles the interface layer
implemented by DeepProbLog using neural predicates. How-
ever, the solution to the neural symbolic integration is quite
different. Instead of relying on a probabilistic semantics of
the logic, NGS provides a backward (i.e. correction) module
for propagating the error through the symbolic grammar. By
being tailored to the specific task, the backward module can
be very efficient. This method is less general than Deep-
ProbLog, where the correction is automatically computed



given any possible logic program.

6.3 Results
To concisely describe the results, we will use the following
abbreviated terms. Query time: The time it takes for a method
to perform the proving for a single query. For exact methods,
this involves all proofs, and for DPLA*, this involves a single
proof (unless otherwise specified). Neural predicate accu-
racy: The accuracy of the neural predicate measured on the
relevant dataset. For tasks based on MNIST images, this is
the test set, unless specified otherwise. For all graphs, a line
represents the median, and the shaded area spans between
the first and third quartiles. For all tables, we report the mean
and standard deviation. All experiments were run 5 times.5

Q1: Scaling Inference For this first question, we are only
interested in the scalability of inference, and we do not con-
sider the learning aspect. The aim of this experiment is to
show how approximate inference is capable of answering
queries faster than exact inference, and thus can scale to
larger examples. To answer questions Q1.1 and Q1.2, we
evaluate DPLA* for both the uniform cost search and geo-
metric mean heuristics, DeepProbLog with exact inference
and NeurASP. To investigate the effect of the accuracy of
the neural predicates, we use varying numbers of examples
to pre-train the neural predicates. As the pre-training trains
the neural predicates on an easier task first,it is a form of
curriculum learning.

The results are shown in Figure 3a. When we compare
the methods that use exact inference: NeurASP and Deep-
ProbLog, we see that the average time to answer a query
grows rapidly and quickly becomes intractable. This is ex-
pected as these methods consider all proofs for a query, which
grows rapidly with the number length. We can also see that
NeurASP is slightly faster than DeepProbLog.

However, DPLA* with both Uniform-cost Search (UCS)
and the Geometric Mean (GM) approximate inference with
DeepProbLog can answer the queries several order of mag-
nitude faster than the exact methods. The geometric mean
heuristic is also considerably faster than the uniform-cost
search when the neural predicate accuracy is low, but the
difference grows smaller as this accuracy increases. For this
reason, we will use the geometric mean heuristic in the re-
mainder of the DPLA* experiments. To answer question
Q1.3, we plot the query time with respect to the accuracy dur-
ing training. In Figure 3b, we see that the speed of inference
for DPLA* depends on the accuracy of the neural predicates.
As the accuracy goes up, the times it takes to find a proof in
DPLA* decreases.

To conclude, DPLA* is able to prove queries orders of
magnitude faster than exact methods. The geometric mean
heuristic outperforms uniform cost search if the neural pred-
icate accuracy is low, but the difference decreases as the
accuracy improves. The speed of DPLA* improves as the
neural predicate accuracy increases.

5The code is available here: https://github.com/ML-KULeuven/
deepproblog
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(b) Q1.3: The average query time on the MNIST addition task
(N=2) for DPLA* with the geometric mean heuristic, with respect
to the neural predicate accuracy.

Figure 3: Q1: Time to answer queries on the MNIST addition task.

Q2: Scaling Learning To answer this question, we com-
pare DPLA*, NeurASP and NGS on the MNIST addition,
HWF and CLUTRR datasets. Q2.1 investigates how approx-
imate inference impacts the learning in terms of accuracy,
speed and convergence. We first compare DeepProbLog,
NeurASP and DPLA* on MNIST addition for N = 1..3
for uninitialized neural networks and neural-networks pre-
trained with limited amounts of direct supervision. As can be
seen in Figure 4, DPLA* performs only slightly worse than
DeepProbLog with exact inference. Without pre-training,
DPLA* converges slower than exact inference. Due to the
wider spread and lower mean, we can also see that the train-
ing is less stable and does not converge reliably to the correct
solution. In Table 1, we compare the accuracy of the dif-
ferent methods on the test set of the MNIST addition. We
can see that the exact methods reach the highest accuracy,
but can only scale to N = 2. DPLA* with exploration at-
tains a slightly lower performance than the exact methods.
Note, however, that DPLA* with exploration does not scale
to N = 3, since it considers too many proofs at the start of
training. DPLA* achieves the lowest accuracy of all consid-
ered methods, but it is the only one that scales to N = 3.
DPLA* without exploration, but pre-trained using 16 MNIST
digits, performs similar to DPLA* with exploration, but it

https://github.com/ML-KULeuven/deepproblog
https://github.com/ML-KULeuven/deepproblog


can also scale to N = 3, where it performs significantly
better.

We further explore the same question using the HWF task.
We split off 10% of the training dataset as the validation set,
which we use to select the best model during training. It is
important to note that this is different from the testing method-
ology from the original paper where the test set was used to
perform the selection. We use a validation set as this gives a
less biased result. We report the accuracy on the test set, av-
eraged over five runs. In Table 2, we see the performance of
DeepProbLog, DPLA* and NGS on handwritten formulas of
varying length. Exact inference in DeepProbLog can handle
only expressions of length up to 3. Using approximate infer-
ence with the geometric mean heuristic allows DeepProbLog
to scale to all the expressions in the dataset. We also note
that DPLA* is able to learn without curriculum learning. The
performance of both DeepProbLog and DPLA* for expres-
sions of lengths up to 5 is close to the state-of-the-art NGS,
which is quite interesting since DPLA* uses a task-agnostic
approach. However, we have found a sharp decrease in mean
accuracy for expressions of length 7 for NGS, as for some ini-
tializations NGS fails to converge. For the CLUTRR dataset
we used the same setting as in Manhaeve et al. (2021) but
with forward inference (implemented on a meta-level). Due
to the cyclical nature of the rules, forward inference is more
efficient than backward reasoning. The results in Figure 5
show that DPLA* is able to achieve good performance on
an NLP setting as well, and is comparable to that of exact
inference as shown in Manhaeve et al. (2021).

In question Q2.2, we analyse the convergence on the
MNIST addition task. The results are shown in Figure 4.
Without pre-training, DPLA* converges noticeably slower
than exact inference. However, by pre-training the neural
predicates with a small amount of images (only 16), ap-
proximate proving converges considerably faster. When
pre-training the neural predicates, DPLA* shows the same
convergence trend and the same performances as the exact
algorithm with the same pre-training, with the latter taking a
lot more time to answer each query, cf. Figure 3a.

For question Q2.3, we investigate whether exploration mit-
igates the drop in performance in absence of pre-training. We
run the experiment with exploration for the neural predicates.
The result can be seen in Figure 4. Here, we can see that,
when using exploration, the spread in the accuracy between
the pre-training and non pre-training settings is small, indi-
cating that the convergence is reliable. This is not the case
without exploration, indicating that for some runs, the learn-
ing does not converge on the correct solution. We can also
see that exploration slows convergence.

To conclude, learning with approximate inference has a
negative impact on learning in absence of pre-training or
exploration. Convergence is slower and the final accuracy is
also lower, as some runs do not converge onto a good solution.
Using curriculum learning to pre-train the neural predicate
makes the method converge as fast as exact inference and
with the same accuracy. Moreover, the use of exploration on
the neural predicates allows all the runs to converge on a good
solution, but it converges slower than without exploration.
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Figure 4: Q2:The neural predicate accuracy during training curves
for DeepProbLog and DPLA* on the MNIST addition task, with and
without pre-training and exploration. The number between brackets
is the number of examples used to pre-train the neural predicates.
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Figure 5: Q2 The results on the systematic generalization of the
CLUTRR dataset. k indicates the relation lengths present in the
training data.

Q3: Parametric Heuristic To answer this question, we
consider the task of multi-instance MNIST addition. In this
task, we investigate the use of defining a heuristic over the
addition/3 goal. The idea is that by being able to esti-
mate the probability of this goal, the correct bags are more
likely to be selected and the training is more efficient. We
pre-train the heuristic with varying number of examples of ad-
ditions. We also continue training of the heuristic throughout
the training of the neural predicates.

Figure 6 shows the results for the multi-instance MNIST



N
Methods 1 2 3

DeepProbLog 97.2± 0.5 95.2± 1.7 –
NeurASP 97.3± 0.3 93.9± 0.7 –

DPLA* 88.9± 14.8 83.6± 23.7 77.4± 33.3
DPLA* w/ pre-training (16) 95.8± 0.4 93.7± 0.2 88.9± 1.6
DPLA* w/ exploration 96.7± 0.2 93.4± 0.7 –

Table 1: Q2 The accuracy on the MNIST addition test set for N=1..3 when trained on datasets of the same length.

addition problem on bag size 16. We see that training of the
neural predicate is only effective when the proving is guided
by the heuristic. A more informed heuristic leads to more
efficient training, and a higher final accuracy. We also see that
a more informed and accurate heuristic leads to more stable
convergence and a higher final accuracy. We can also see that
we are able to further fine-tune the heuristic during training,
and that exploration has a positive effect on learning the
heuristic as well. Interestingly, although exploration usually
makes a method slower, here, it makes the method faster
instead as the heuristic accuracy is higher, which results in
faster inference.

To conclude, we show that parametric heuristic is effective
at guiding the proving process when it is sufficiently accurate,
reaching a higher accuracy and making the proving process
faster. We are also able to fine-tune the heuristic throughout
the training process.

7 Related Work
7.1 Approximate Inference
Exact inference in ProbLog is hard as it involves weighted
model counting (WMC), which is #P-complete. This explains
why there has already been a lot of research into approximate
inference for probabilistic logic programming. However,
these techniques have not yet been used or evaluated in the
context of neural-symbolic computation. Furthermore, this
context brings additional complications that were not consid-
ered in this previous work. The majority of the parameters
in neural-symbolic methods reside in the neural networks,
and cannot be directly optimized. This can lead to conver-
gence towards local optima if the methods do not explore
sufficiently. On the other hand, we leverage certain properties
of the neural-symbolic AI to further improve the approximate
inference. The assumption that in many tasks the success
probability is equal to the explanation probability is used to
make a more informed non-parametric heuristic. In addition,
similarities between different queries (e.g. + = 7
vs. + = 7) can be used by a parametric heuristic to
further guide the search. Approximate inference for proba-
bilistic logic programming can be divided into two categories:
approximate proving and approximate WMC.

Approximate Proving These methods use only a subset
of the proofs in the SLD-tree, which is also what DPLA*
does. The k-best approach (Gutmann et al., 2008) is a branch-
and-bound algorithm that only includes the top-k most likely
proofs. This makes it very similar to DPLA* with uniform-

cost search without exploration. However, k-best does neither
consider exploration nor curriculum learning to avoid getting
stuck in local optima when using approximate inference. The
idea of k-best was further refined with k-optimal (Renkens,
Van den Broeck, and Nijssen, 2012). K-best considers the
probability of each proof separately. K-optimal, on the other
hand, looks at the total (disjoint) probability of the k proofs
that it uses, and selects as next proof the one that yields the
maximum increase in total probability. A related approach
is that of bounded approximation. Here, partial proofs are
pruned when they reach a certain depths. The disjunction of
the proofs that have been found already are used to compute
the lower bound of the query probability, as finding more
proofs can only increase the probability. The partial proofs
that were not fully resolved are used to compute an the upper
bound. If the difference between these two bounds is too
large, the procedure is restarted with a deeper depth bound.

Approximate Weighted Model Counting Some methods
rely on only approximating the weighted model count. So
everything up to this step is the same as before (i.e. the
grounding / proving phase, and turning the resulting program
/ proofs in to a logical formula). These methods try to avoid
having to deal with the disjoint sum problem. For example, in
DNF sampling (Shterionov et al., 2010), a sampling approach
is used to approximate the real WMC from a DNF formu-
lation of the logical formula without having to explicitly
solve the disjoint sum problem. Similarly, MCMC estimation
Moldovan et al. (2013) estimates conditional probabilities
by implementing a Monte Carlo Markov chain on the and-or
tree produced by the grounding phase.

Other Approaches Some approaches deviate from the
standard inference procedure. One such approach is program
sampling (Kimmig et al., 2008). In this approach, one re-
peatedly samples a logic program by determining the truth
value for all probabilistic facts by sampling according to their
specified probability. For each sampled program we check
if the query is entailed. The fraction of samples that entail
the query is the probability of the query. Tp compilation
Vlasselaer et al. (2016) combines forward reasoning with
formula construction. At each step of the forward inference,
if a clause can be applied, it both adds the head to the logic
program, and adds a logical formula representing that clause
to the logical formula representing the query. By also per-
forming the compilation at this point, we get an efficient
algorithm that can be stopped at any time to calculate the
approximate probability of the query. It is also interesting to
note that incrementally compiling the formula is efficient.
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(a) Neural predicate accuracy on the first
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MNIST addition test dataset
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Figure 6: Q3: The MIL Addition task with bag size 16.

Expression length
Method 1 3 5 7

NGS 90.2± 1.6 85.7± 1.0 91.7± 1.3 20.4± 37.2
DeepProbLog 90.8± 1.3 85.6± 1.1 – –
DPLA* 90.9± 0.2 81.1± 2.4 89.0± 0.8 94.8± 0.5

Table 2: Q2.1 Accuracy on the HWF dataset for expressions of length 1 to 7. Comparison of the proposed approach (DPLA*) with exact
DeepProbLog inference and NGS.

7.2 Neural-Symbolic Methods

As argued above and in (De Raedt et al., 2020), inference
in neural symbolic systems shares many properties with in-
ference in (probabilistic) logic programs. As a consequence,
approximate inference is an important, though not yet widely
explored problem in neural symbolic computation. Many sys-
tems in the neural-symbolic scenario focus on approximating
WMC using MCMC or variational approaches (Marra and
Kuželka, 2019; Zhang et al., 2020). However, there are few
systems that retain the focus on approximating the proving
step like Neural Theorem Provers (NTP) (Rocktäschel and
Riedel, 2017). NTPs are, like DeepProbLog, inspired by
Prolog. The NTP uses a mechanism called soft-unification,
which is a relaxation of the unification procedure used in Pro-
log. While unification applies only if two terms can be made
identical, soft unification applies to any pair of terms that are
similar in the latent space. However, because every term can
be compared to every other term with the same arity, prov-
ing becomes easily intractable. Two approximate inference
schemes for NTP have been proposed. In the first approach
(Minervini et al., 2020a), nearest neighbourhood search is
used to focus only on those branches where soft-unification
provides the higher scores. This resembles how, in our ap-
proach, approximate inference uses only the most promising
proofs. In the second approach (Minervini et al., 2020b),
a neural module provides the next most promising rule(s)
to expand. This is similar to how the parametric heuristic
is used to guide the proving process in this work. NTPs,
however, have been exclusively applied in structure learning
tasks in the setting of knowledge-base completion, where
the program is not known in advance, but it is learned as a

by-product of the main task. Structure learning has not yet
been investigated for DeepProbLog, and conversely, the NTP
has not yet been applied to the type of task considered in this
work.

Another related neural-symbolic approach is NeuroLog
(Tsamoura and Michael, 2020). NeuroLog proposes to ap-
proximate the inference by neurally guiding the abduction.
The idea is that the output of the neural network is used to
instantiate only a subset of the possible neural predicates.
Then, the framework considers only the proofs that contain
the facts in this subset or small similar perturbations. The
concepts of perturbation and similarity are, however, domain
dependent and they are not provided as part of the framework.
This makes this last system more similar to the NGS baseline
than the problem-agnostic approach we propose in this paper.

8 Conclusion
We introduced an approximate inference technique for Deep-
ProbLog called DPLA*. It extends an approximate inference
algorithm from the field of statistical-relational AI to the
neural-symbolic setting. Instead of considering all possible
proofs for a certain query, the system searches for the best
proof using an A*-like search. For this A*-like search, we
considered several heuristics, including a parametric heuristic
that can be trained on additional data to guide the proving
process better. We showed on 4 datasets that DPLA* is more
scalable than exact inference methods such as DeepProbLog
and NeurASP, and can be applied on larger tasks. We also
address the convergence issue that arises when the system
learns using approximate inference using curriculum learning
and UCB-based exploration.



Acknowledgements
This research has been funded by the Research Foundation -
Flanders and the KU Leuven Research Fund (C14/18/062)".
It has also been supported by the European Research Council
Advanced Grant project SYNTH (ERC AdG-694980), the
Flemish Government under the “Onderzoeksprogramma Ar-
tificiële Intelligentie (AI) Vlaanderen” programme, and the
Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Founda-
tion.

References
Besold, T. R.; Garcez, A. d.; Bader, S.; Bowman, H.; Domin-

gos, P.; Hitzler, P.; Kühnberger, K.-U.; Lamb, L. C.; Lowd,
D.; Lima, P. M. V.; et al. 2017. Neural-symbolic learning
and reasoning: A survey and interpretation. arXiv preprint
arXiv:1711.03902.

Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
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