
Elite BackProp: Training Sparse Interpretable Neurons
Theodoros Kasioumis, Joe Townsend and Hiroya Inakoshi

Abstract
In this paper we present a method called Elite BackProp (EBP) to train more interpretable convolutional
neural networks (CNNs) by introducing class-wise activation sparsity; after training, each class will
be associated with a small set of elite filters that fire rarely but highly activate on visual primitives
from images of that class. Our method is broadly applicable as it does not require additional object
part annotations during training. We demonstrate experimentally that EBP realizes high degrees of
activation sparsity with no accuracy loss and enhances the performance of a rule extraction algorithm
that distils the knowledge from a CNN, by inducing more compact rules that use fewer atoms to describe
the decisions of a CNN while maintaining high fidelity compared with other solutions. This happens
because EBP induces sparse compositional representations that reuse and combine primitive filters.
Such representations can assist in understanding the reasoning behind a CNN and build trust into their
decisions.

Keywords
neural-symbolic integration, training interpretable CNNs, activation sparsity, rule extraction

1. Introduction

Training neural networks to be interpretable [1, 2] or interpreting their decisions [3, 4, 5, 6], has
received a great deal of attention in recent years. Multiple rule extraction algorithms have been
proposed that aim to distil the knowledge from a CNN and intepret its decisions [7, 8, 9, 10, 11],
many of which rely on thresholding filter activations to determine whether a filter can be
considered active (a process known as quantisation [9, 12]), detecting a specific pattern across
images. After combining active filters, rules are formed to explain the classification decision of
the CNN, where each atom used in explanations corresponds to an active filter.

One can regard compact explanations as more interpretable as there is less information for
the reader to assimilate. Thus, ideal explanations are composed of smaller sets of rules which
are in turn composed of smaller sets of atoms that can be reused across the rule set and across
different classes in different combinations. Such compactness is more difficult to achieve if the
original CNN itself encodes a large number of redundant representations, i.e. in which different
convolutional filters co-activate on the same concepts.

We aim to tackle the aforementioned inefficiencies by introducing an algorithm called Elite
BackProp (EBP) that enforces class-wise activation sparsity. That is, EBP trains CNNs to associate
each class with a handful of elite filters that fire rarely but highly activate on images from that

NeSy’20/21: 15th International Workshop on Neural-Symbolic Learning and Reasoning, October 25–27, 2021, Virtual
" theodoros.kasioumis@fujitsu.com (T. Kasioumis); joseph.townsend@fujitsu.com (J. Townsend);
hiroya.inakoshi@fujitsu.com (H. Inakoshi)
� 0000-0003-2008-5817 (T. Kasioumis); 0000-0002-5478-0028 (J. Townsend); 0000-0003-4405-8952 (H. Inakoshi)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:theodoros.kasioumis@fujitsu.com
mailto:joseph.townsend@fujitsu.com
mailto:hiroya.inakoshi@fujitsu.com
https://orcid.org/0000-0003-2008-5817
https://orcid.org/0000-0002-5478-0028
https://orcid.org/0000-0003-4405-8952
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


class. By filter we mean the set of weights that make a single channel in the convolutional layer.
Every filter is assigned a probability of being active on each class based on its frequency and
magnitude of activation on images from that class. Filters are ranked for each class according to
their activation probability and the top-K filters for a class form its elite. If a filter activates on
an image from a class that has low probability of activating that filter, then a penalty inversely
proportional to filter’s ranking is applied. Since only the elite filters will have strong activations
for each class, the model is incentivised to learn more compositional representations by re-
using and combining primitive filters to describe more complex concepts rather than learning
redundant multiple filters for each class separately.

Activation sparsity has been used extensively in the literature in many different forms
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and it has also been hypothesized that sparsely activated
neurons are more interpretable than neurons that activate frequently [23]. To the best of our
knowledge, EBP is the first to induce class-wise activation sparsity as we define it above.

Our experiments show that models trained with EBP maintain their original accuracy while
realizing high degrees of sparsity. Furthermore, we demonstrate that the group activation
sparsity induced by EBP benefits a rule extraction algorithm that distils the knowledge from a
trained CNN and explains the output classification in an interpretable logical language over
quantized filter activations represented as logical atoms. We show that EBP yields extracted
programs with high fidelity (accuracy in approximating the original model) that use much fewer
atoms compared with other activation sparsity methods. Moreover, we present qualitative
examples of how the receptive field of filters trained with EBP is much more interpretable
compared to training without as it consistently detects a specific pattern across different images.

This paper is organized as follows: in Section 2 we review prior work in activation sparsity
and interpretability. In Section 3, we present EBP and Section in 4 we conduct experimental
evaluation of EBP. Section 5 concludes by summarizing our results and discussing future work.

2. Related Work

Work in the field of neural-symbolic integration [3, 8, 12, 24, 25] concerns both post-hoc and self-
interpretable models of explainability for neural networks, and employ symbolic representations
such as decision trees or logic programs to explain a network’s behavior. ProtoPNet [1] trains
interpretable CNNs by partitioning the input image into sub-regions and associating each
region with a prototypical part of some class that “looks like” the extracted region. Another idea
introduced in [2] uses a “filter loss”that pushes a filter to represent an object part of a particular
class, but not others. Both lines of work differ from EBP in that they both add a new structural
layer whereas EBP only adds a penalty to the loss that enforces class-wise activation sparsity.

Another line of research focuses on sparsifying connections or activations in neural networks
in order to reduce overfitting and redundancy in representations while optimizing the model in
terms of accuracy and speed. The literature in weight sparsification and compression is vast,
see for example [26] and references therein. However, our work is only concerned with activity
sparsity, and not weight sparsity.

Sparse activity was initially inspired by sparse coding [23] and has been used in the literature
in many different forms. The commonly used ReLU activation function [13] induces activation



sparsity in a fraction of neurons and recently authors in [18] proposed three activation functions
to induce spike-like sparsity. A k-Winners-Take-All activation (k-WTA) function which retains
only the k highest activations from a layer and sets all the rest to zero was used in [17] to
improve adversarial robustness. This is a natural generalization of the boolean K-Winners-Take-
All network [27] which was motivated by biological neural circuits and had boolean outputs.
Authors in [28] also utilized k-WTA in k-Sparse Autoencoders. Another winner-take-all method
is Duty Cycle [19] which sparsifies activations in a layer like k-WTA but in addition it sparsifies
connections preceding that layer by initializing it from sparse random distribution and also it
introduces a boosting term to favor units that have not been recently active in order to encourage
every unit to be equally active and hence maintain the representational power of the model.
Our method differs from these works in that it associates images of each class to a common
group of winners/elites without modifying the forward pass or pruning connections. Instead it
penalizes filters that activate on images from a class that has low probability of activating those
filters.

Dropout [15] has been widely used to prevent co-adaptation of neurons by randomly dropping
them during training with uniform probability. Sparseout [16] extended Dropout by imposing
an 𝐿𝑞 penalty on the activations, allowing one to choose the level of activation sparsity. Recently
DASNet [20] introduced a dynamic activation sparsity method, utilizing a winners-take-all
dropout technique. DASNet behaves as a mask between layers and prunes low-ranking neurons
in terms of their activation magnitude at run-time for computational speedups. In contrast EBP
is not concerned with pruning and the activations are not masked at runtime.

Other solutions induce activation sparsity by applying regularization penalties; [29] penalizes
the deviation of the expected activation of the hidden units from a low fixed level 𝑝 to achieve a
sparsity level 𝑝 layer-wise and [14] added a cross entropy term between the average probability
of unit activation and the desired sparsity level 𝑝 that encourages the activation probability
of a neuron to be close to 𝑝. [30] used a clustering based regularization approach to obtain
sparse representations. Recently [21] exploited an 𝐿1 activation regularizer for computational
benefits and [22] improved the results using a variant of ReLu in conjuction with a regularizer
based on Hoyer sparsity metric [31, 32]. Both [21, 22] induce activation sparsity layer-wise,
i.e., a certain percent of neuron activations in each layer will be retained and [22] introduces a
novel approach for activation pruning for computational speedups. In contrast, EBP induces
class-wise sparsity, meaning that images from a specific class will be associated with the same
group of elite filters and no pruning is performed.

3. Method

We denote by 𝐶 the number of classes in a dataset 𝒳 and by 𝑐𝑖 the ground truth class of an
image 𝑋𝑖 ∈ 𝒳 . Given a conv-layer 𝑙 of a CNN with filters {𝑓 (𝑙)

1 , . . . , 𝑓
(𝑙)
𝑀𝑙
} and a batch of images

{𝑋𝑖, . . . , 𝑋𝑁}, let 𝐹 (𝑙)
𝑖 = (𝐹

(𝑙)
𝑖1 , 𝐹

(𝑙)
𝑖2 , . . . , 𝐹

(𝑙)
𝑖𝑀𝑙

) be the feature map output of 𝑋𝑖 at the 𝑙-th layer,

where each 𝐹
(𝑙)
𝑖𝑗 , 𝑗 = 1, . . . ,𝑀𝑙, is a 2D activation matrix that is the output of convolving the

feature map of layer 𝑙 − 1 with the 𝑗-th filter for 𝑖-th image, followed by ReLU and maxpooling
(if present). 𝐹 (0)

𝑖 = 𝑋𝑖 denotes the input image. The activation 𝐴
(𝑙)
𝑖𝑗 of filter 𝑓 (𝑙)

𝑗 for the 𝑖-th



image in the batch at layer 𝑙 is defined as the spatial average of activations:

𝐴
(𝑙)
𝑖𝑗 =

1

(𝐻𝑖𝑙𝑊𝑖𝑙)

𝐻𝑖𝑙∑︁
𝑟

𝑊𝑖𝑙∑︁
𝑠

|(𝐹 (𝑙)
𝑖𝑗 )𝑟𝑠|, (1)

where 𝐻𝑖𝑙,𝑊𝑖𝑙 denotes the height and width of the feature map at layer 𝑙 respectively for the
image 𝑋𝑖 and (·)𝑟𝑠 stands for the (𝑟, 𝑠) spatial coordinates. A filter 𝑓 (𝑙)

𝑗 is said to be active for

an image 𝑋𝑖 if its activation 𝐴
(𝑙)
𝑖𝑗 > 𝜃, where 𝜃 is a specified threshold.

EBP associates each class 𝑐 with a handful of 𝐾𝑐 elite filters that activate rarely and have
strong activation magnitude on images from that class. This is accomplished by assigning
each filter a probability of being active for each class based on the frequency and magnitude of
activations on images from that class during training. Then, for each class 𝑐 filters are ranked
and the top-𝐾𝑐 form its elite. 𝐾𝑐 controls the degree of sparsity and representation power of
the model (more sparse for lower 𝐾𝑐). Filters that activate on images from a class that do not
belongs to its elite are penalized, with penalties inversely proportional to their ranking.

On each iteration and for each image𝑋𝑖 of class 𝑐𝑖 in the batch, EBP stores the𝑀𝑙-dimensional
vector (𝐴(𝑙)

𝑖1 , . . . , 𝐴
(𝑙)
𝑖𝑀𝑙

) of average filter activations (Eq. 1) from a layer 𝑙 accumulatively in a
vector 𝐷𝑐𝑖 as follows:

𝐷𝑐𝑖 ← 𝐷𝑐𝑖 + (𝐴
(𝑙)
𝑖1 , . . . , 𝐴

(𝑙)
𝑖𝑀𝑙

). (2)

Afterwards, for each class 𝑐, filters are ranked based on their history of accumulated activations:

𝑓 𝑐
𝑟𝑖 ≻ 𝑓 𝑐

𝑟𝑖+1
iff 𝐴𝑐

𝑟𝑖 > 𝐴𝑐
𝑟𝑖+1

, for 𝑖 ∈ {1, . . . ,𝑀𝑙−1}, (3)

where 𝐷𝑐 = (𝐴𝑐
1, . . . , 𝐴

𝑐
𝑀𝑙

) and 𝐴𝑐
𝑟 =

∑︀
𝑖𝐴

𝑐
𝑖𝑟, 𝑟 = 1, . . . ,𝑀𝑙 denotes the accumulated

activations of the 𝑟-th filter 𝑓 𝑐
𝑟 for class 𝑐 (layer (𝑙) is removed from the superscript for notational

convenience). The 𝐾𝑐 highest activated filters for each class 𝑐 form its elite and are stored in
a set 𝐸𝑐 = {𝑓 𝑐

𝑟1 , . . . , 𝑓
𝑐
𝑟𝐾𝑐
}. For each filter 𝑓 𝑐

𝑗 we define a probability 𝑝𝑗𝑐 of being active for
class 𝑐 as in Equation 4 and we penalize filters which activate on an image 𝑋𝑖 of class 𝑐𝑖, with
penalties 𝑅(𝑊1:𝑙) proportional to (1− 𝑝𝑗𝑐𝑖) (i.e., the probability of filter being inactive):

𝑅(𝑊1:𝑙) =

𝑁∑︁
𝑖=1

𝑀𝑙∑︁
𝑗=1

(1− 𝑝𝑗𝑐𝑖)𝐴
(𝑙)
𝑖𝑗 , where 𝑝𝑗𝑐 = 1− 𝛿𝑗𝑐

𝐷𝑐
𝑗

𝐴𝑐
𝑟𝐾𝑐

, (4)

where 𝑊1:𝑙, denotes the set of weights from layer 1 up to 𝑙, 𝛿𝑗𝑐 = 1 if 𝑓𝑗 ̸∈ 𝐸𝑐 and 0 otherwise,
𝐷𝑐

𝑗 is the 𝑗-th index of 𝐷𝑐 and 𝐴𝑐
𝑟𝐾𝑐

the 𝐾𝑐-th sorted accumulated activation (Eq. 3) for class 𝑐.
The total loss we optimize in each batch is a combination of cross entropy loss and 𝑅:

𝐿𝑊 (𝑦, 𝑦) = −
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑦𝑖𝑐 log 𝑦𝑖𝑐̂ + 𝜆𝑅(𝑊1:𝑙), (5)

where 𝑦𝑖𝑐 = 1 if the 𝑖-th observation 𝑋𝑖 is of class 𝑐 and 0 otherwise, 𝑦𝑖𝑐̂ is the predicted proba-
bility that 𝑋𝑖 is of class 𝑐 and 𝜆 ∈ R controls the regularization strength. In our experiments
we have chosen for simplicity the number of elites 𝐾𝑐 per class 𝑐 to be equal to 𝐾 for all classes,
and we leave experimenting with different 𝐾𝑐 for each class for future work. We refer to the
Appendix 6 for further discussion and visualization of the class probabilities of images before
and after applying EBP.



4. Experiments

We conduct experiments on 2 image classification datasets; a 6-class animal subset [2] of Pascal
VOC [33] and a toy 3-class subset of places365 dataset [34] consisting of the classes forest road,
highway and street which we will refer to as the road dataset. Regarding (train, valid, test)
splits, we further split the original train-val to get a test set because annotations were not
available for the original test set. We use (3341, 594, 1399) for the 6-class Pascal subset and
(10444, 1500, 3054) for the 3-class road dataset. We quantitatively compare EBP in terms of
accuracy, activation sparsity and rule extraction (Section 4.1) with several activation sparsity
methods from the literature. We show that EBP results in higher sparsity without sacrificing
accuracy and also that rules extracted from a CNN trained with EBP use fewer atoms and have
higher fidelity. Qualitative examples of extracted rules in the road dataset using EBP are shown
in Fig. 3. From k-winner-take-all methods we compare with k-WTA and Duty Cycle and from
regularization methods we compare with [29] which we refer to as EASR (Expected Activation
Sparsity Regularization). We use Sparseout to investigate the effect of dropout-like methods.
Since our method is concerned with sparsifying existing layer activations, we do not compare
with [1, 2] because they require additional, specialised neural layers to enforce interpretability.

For each method, we initialized VGG-16 with weights pretrained on ImageNet and fol-
lowed the preprocessing and augmentations in [35]. We finetuned the last dense layer for
50 epochs with Adam optimizer [36], ridge regularization parameter 0.005 and learning rate
5× 10−5 using an NVIDIA GPU 1080 Ti 12GB and Tensorflow1. Afterwards, we applied each
method after the conv13 layer and resumed training all layers for 100 epochs with learning
rate 10−6. We select the conv13 layer because filters in deeper layers in CNNs tend to rep-
resent object parts and more semantic concepts than earlier layers [37, 38]. Regarding the
hyperparameters, for EBP we trained with different 𝐾 ∈ {10, 25, 50, 100, 200, 300} (same 𝐾
for all classes) and regularization values2 𝜆 ∈ Λ = {0.1, 0.01, 0.001, 0.0001}. For EASR we
used 𝜆 ∈ {0.0005, 0.0001, 0.00005, 0.00002} and for k-WTA we trained with density ratio
𝑘 ∈ {0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95}. For Duty Cycle we tune the density coefficient 𝑎̂𝑙 that
controls the percentage of neurons that are expected to be active in {0.1, 0.2, 0.5, 0.7, 0.9} and
the boosting coefficient 𝛽 from 1 up to 512, incrementing it in powers of 2. For Sparseout we
experimented with values for 𝑝 ∈ {0.3, 0.5} and 𝑞 ∈ {0.5, 1, 1.5, 2, 2.5, 3}.

4.1. Sparsity and Rule Extraction

We measure the activity sparsity after training with each method with various metrics such as
Hoyer measure [32], Lifetime and Population kurtosis, Treves-Rolls lifetime (T-R Life.), Treves-
Rolls population (T-R Popul.) and activity sparseness [39] on images from road and 6-class
subset of Pascal dataset. The rationale behind choosing this toy road dataset to assess the
sparsity and benefits in a simple rule extraction algorithm (Section 4.1) is that scenes contain
topics that are shared between different classes and we don’t want to learn separate filters for
each of them. For example, trees appear in all classes, hence it is preferable to learn one filter

1https://www.tensorflow.org/
2for smaller 𝐾 values and 𝜆 = 0.01 the convergence was slower. Training for 100 epochs was necessary to

determine the best model but with higher 𝐾 values and lower 𝜆 the models converged in 30− 50 epochs.



Figure 1: Comparing accuracy, fidelity and size of extracted program for each method using different
hyperparameters and avg tree depth 6 for road (1a-c) and 7 for 6-class subset of Pascal (2a-c) (each
point represents the average over three trials). EBP is associated with high activation sparsity without
sacrifycing accuracy. Rules extracted from CNN trained with EBP use less atoms in explanations.

Road Rule Extraction Road Activity Sparsity
Sparsity Extracted Fidelity Atoms Rules Avg. Hoyer Life. Popul. T-R T-R Activ. CNN
Method Acc. Depth Spars. Kurt. Kurt. Popul. Life. Spars. Acc.
EBP 84.48 89.87 12 36 6 0.9287 1175.3 212.34 0.9868 0.9807 0.9791 89.47
Vanilla 78.95 82.35 44 56 6 0.5593 32.02 28.26 0.7789 0.7366 0.8367 87.46
Sparseout 80.64 84.84 36 46 6 0.6331 57.02 27.24 0.84 0.769 0.8746 89.03
DutyCycle 82.16 87.11 28 39 6 0.7413 260.36 46.45 0.9141 0.8508 0.9126 89.16
k-WTA 80.85 86.46 31 45 6 0.6436 61.83 28.54 0.8483 0.7671 0.8803 89.32
EASR 79.04 84.38 19 36 6 0.9269 967.08 223.91 0.9862 0.9792 0.9789 88.93

Table 1
For each method we have chosen hyperparameters that yielded the best CNN accuracy and sparsity on
road dataset (see 6 Appendix). For an ablation study of different hyperparameters see Fig. 1. CNNs
trained with EBP achieve high activity sparsity and the program extracted from the CNN using EBP
has higher fidelity and uses fewer rules and atoms in explanations. The best depth for each method
was chosen based on sklearn’s cost-complexity pruning and results are averaged across 3 different runs.
Notice also that all sparse activity methods achieve better accuracy than the baseline. Best results
shown in bold (if deviation is less than 0.5% from the best multiple are marked).

Pascal Rule Extraction Pascal Activity Sparsity
Sparsity Extracted Fidelity Atoms Rules Avg. Hoyer Life. Popul. T-R T-R Activ. CNN
Method Acc. Depth Spars. Kurt. Kurt. Popul. Life. Spars. Acc.
EBP 71.48 72.69 26 32 7 0.861 286.64 140.93 0.9508 0.9674 0.9584 89.2
Vanilla 57.18 57.68 54 63 7 0.454 17.32 18.88 0.6983 0.6659 0.7856 86.49
Sparseout 66.98 68.26 39 51 7 0.488 16.84 19.55 0.7189 0.6598 0.7994 92.2
DutyCycle 53.45 67.33 44 58 7 0.619 71.55 46.4 0.8104 0.8032 0.8527 87.53
k-WTA 70.41 71.19 48 53 7 0.483 15.73 18.45 0.7069 0.6459 0.7909 91.92
EASR 58.12 59.25 42 41 7 0.731 71.87 78.69 0.9061 0.882 0.9125 87.92

Table 2
Similar analysis as in Table 1 for rule extraction and sparsity of each method on 6-class subset of Pascal.
Ablation study for different hyperparameters in depicted in Fig. 1 (bottom). Results consistently indicate
that EBP realizes high activity sparsity and the program extracted from CNN using EBP has higher
fidelity and uses fewer rules and atoms in explanations. Best results shown in bold.



Figure 2: Comparison of a filter’s highly activated feature maps (as defined in [2]) in ordinary CNN
(top) and those after EBP (bottom) in road dataset (col. 1-4) and pascal (col. 5-8) . Filters trained with
EBP capture more compact semantic regions and it is easier to access the activation pattern.

Figure 3: Visualization of rules extracted after training with EBP for depth 3 trees and the receptive
field of filters. Green frame denotes presence and red absence of a pattern. Notice how concepts like
trees and buildings are shared between classes promoting more compositional representations that use
fewer atoms.

that fires in response to trees (in all classes) rather than having a filter per class. Results in
Tables 1 and 2 indicate that EBP achieves high activity sparsity without sacrificing accuracy.
Fig. 2 depicts that filters trained with EBP consistently detect a specific pattern across images
and that they fire in response to smaller and more compact semantic regions which are more
interpretable and have activation patterns that are more clear.



Though there is no consensus in the literature regarding a metric for interpretability, the size
of an explanation has been proposed as an option [8, 12]. To assess the extent to which EBP
benefits rule extraction by inducing parsimonious compositional representations that re-use
and combine primitive filters to form new concepts, we show how a binary decision tree trained
as a symbolic approximation of a CNN’s behavior is more compact when that CNN is trained
with EBP than without. To perform rule extraction we first quantize each filter activation. A
filter is considered active if its activation (Eq. 1) is above (𝜇 + 𝜎) where 𝜇 and 𝜎 denote the
mean and standard deviation of filter activations after conv13 layer across all images. The tree
takes the thresholded filter activations of the conv13 layer as the input and the CNN’s output
classification as the target so that for a given input instance the induced decision path from
the root to the leaf node provides a symbolic explanation of the original CNN’s classification
of that instance. Each such path can be regarded as a separate rule over a set of atoms, e.g.
𝐴 ∧ ¬𝐵 ∧ 𝐶 → highway states (Fig. 3 top-left) that if filters A and C are active and filter B is
inactive, then the input is a highway.

We approximated VGG-16 on the road and 6-class subset of Pascal dataset by generating
decision trees using the sklearn3 library’s DecisionTreeClassifier class using entropy criterion
and cost complexity pruning to choose the optimal depth. Fig. 1 (1a-c, 2a-c) shows the tradeoff
between sparsity, fidelity and accuracy after training using different hyperparameter values for
each method. Results in Table 1 and Fig. 1 demonstate that programs extracted from a CNN
trained with EBP have higher fidelity and use consistently fewer unique atoms and rules in
explanations compared to other approaches. This means that EBP induces more compositional
representations that re-use and combine filters instead of using redudant multiple filters for
each class separately. Fig. 3 shows some rules extracted from a CNN trained with EBP and the
receptive field of filters activation. For visualization purposes we used a tree of depth 3.

5. Conclusion and future work

In this paper we proposed a method that promotes group activation sparsity to encourage more
parsimonious and interpretable representations in a CNN. We demonstrated that models trained
with EBP realize high degrees of activation sparsity without sacrificing accuracy and benefit
a rule extraction algorithm that distils the knowledge from a CNN; fewer atoms are used in
explanations while maintaining high fidelity. In future work we aim to conduct experiments
with different 𝐾𝑐 values for each class 𝑐, further analysis of different layers and rule extraction
and possibly an application with emphasis on studying the benefits of compositionality. Another
future direction is to embed rules into neural networks, in order to enhance their interpretability
and generalization capabilities. Rule embedding can assist in neural-symbolic integration,
which is an important step towards bridging the gap between neural networks and symbolic
representations.

3https://scikit-learn.org/stable/



References

[1] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, J. K. Su, This looks like that: Deep learning for
interpretable image recognition, in: Advances in Neural Information Processing Systems,
volume 32, Curran Associates, Inc., 2019.

[2] Q. Zhang, Y. N. Wu, S.-C. Zhu, Interpretable convolutional neural networks, in: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 8827–8836.

[3] J. Townsend, T. Kasioumis, H. Inakoshi, ERIC: extracting relations inferred from convo-
lutions, in: 15th Asian Conference on Computer Vision, Kyoto, Japan, Revised Selected
Papers, Part III, volume 12624 of Lecture Notes in Computer Science, Springer, Nov. 30 - Dec.
4, 2020, pp. 206–222.

[4] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of
methods for explaining black box models, ACM Comput. Surv. 51 (2018).

[5] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, vol. 30, in:
Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017.

[6] M. T. Ribeiro, S. Singh, C. Guestrin, "why should i trust you?": Explaining the predictions
of any classifier, The 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, San Diego California, USA,
June 12-17, 2016, pp. 97–101.

[7] N. Frosst, G. E. Hinton, Distilling a neural network into a soft decision tree, ArXiv
abs/1711.09784 (2017).

[8] R. Andrews, J. Diederich, A. B. Tickle, Survey and critique of techniques for extracting
rules from trained artificial neural networks, Knowledge-Based Systems 8 (1995) 373–389.

[9] H. Jacobsson, Rule extraction from recurrent neural networks: Ataxonomy and review,
Neural Computation 17 (2005) 1223–1263.

[10] Q. Zhang, R. Cao, F. Shi, Y. N. Wu, S.-C. Zhu, Interpreting cnn knowledge via an explanatory
graph, Proceedings of the AAAI Conference on Artificial Intelligence 32 (2018).

[11] Q. Zhang, Y. Yang, H. Ma, Y. N. Wu, Interpreting cnns via decision trees, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[12] J. Townsend, T. Chaton, J. M. Monteiro, Extracting relational explanations from deep
neural networks: A survey from a neural-symbolic perspective, IEEE Transactions on
Neural Networks and Learning Systems 31 (2020) 3456–3470.

[13] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15
of Proceedings of Machine Learning Research, Fort Lauderdale, USA, 2011, pp. 315–323.

[14] V. Nair, G. E. Hinton, 3d object recognition with deep belief nets, in: Advances in Neural
Information Processing Systems, volume 22, Curran Associates, Inc., 2009.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple
way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014) 1929–1958.

[16] N. Khan, I. Stavness, Sparseout: Controlling sparsity in deep networks, in: Advances in
Artificial Intelligence - 32nd Canadian Conference on Artificial Intelligence, Canadian AI
2019, Kingston, ON, Canada, May 28-31, 2019, Proceedings, volume 11489 of Lecture Notes
in Computer Science, Springer, 2019, pp. 296–307.

[17] C. Xiao, P. Zhong, C. Zheng, Enhancing adversarial defense by k-winners-take-all, Inter-



national Conference on Learning Representations (ICLR) (2020).
[18] P. Bizopoulos, D. Koutsouris, Sparsely activated networks, IEEE Transactions on Neural

Networks and Learning Systems 32 (2021) 1304–1313.
[19] S. Ahmad, L. Scheinkman, How can we be so dense? the benefits of using highly sparse

representations, ICMLWorkshop on Uncertainty and Robustness in Deep Learning (2019).
[20] Q. Yang, J. Mao, Z. Wang, H. Li, Dasnet: Dynamic activation sparsity for neural network

efficiency improvement, in: 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI), 2019, pp. 1401–1405.

[21] G. Georgiadis, Accelerating convolutional neural networks via activation map compression,
in: Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 7078–7088.

[22] M. Kurtz, J. Kopinsky, R. Gelashvili, A. Matveev, J. Carr, M. Goin, W. Leiserson, S. Moore,
N. Shavit, D. Alistarh, Inducing and exploiting activation sparsity for fast inference on
deep neural networks, in: Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, 2020, pp. 5533–5543.

[23] F. D. J. Olshausen B. A., Sparse coding with an overcomplete basis set: A strategy employed
by v1?, Vision research 37 (2007) 3311–3325.

[24] I. Donadello, L. Serafini, A. D. Garcez, Logic tensor networks for semantic image interpre-
tation, IJCAI’17, AAAI Press, 2017, p. 1596–1602.

[25] A. S. d. Garcez, D. M. Gabbay, K. B. Broda, Neural-Symbolic Learning System: Foundations
and Applications, Springer-Verlag, Berlin, Heidelberg, 2002.

[26] R. Ma, L. Niu, A survey of sparse-learning methods for deep neural networks, in: 2018
IEEE/WIC/ACM International Conference on Web Intelligence (WI), 2018, pp. 647–650.

[27] E. Majani, R. Erlanson, Y. Abu-Mostafa, On the k-winners-take-all network, in: Advances
in Neural Information Processing Systems, volume 1, Morgan-Kaufmann, 1989.

[28] A. Makhzani, B. Frey, K-sparse autoencoders, arXiv preprint arXiv:1312.5663 (2013).
[29] H. Lee, C. Ekanadham, A. Y. Ng, Sparse deep belief net model for visual area v2, in: Pro-

ceedings of the 20th International Conference on Neural Information Processing Systems,
NIPS’07, Curran Associates Inc., Red Hook, NY, USA, 2007, p. 873–880.

[30] R. Liao, A. Schwing, R. S. Zemel, R. Urtasun, Learning deep parsimonious representations,
in: Proceedings of the 30th International Conference on Neural Information Processing
Systems, NIPS’16, Curran Associates Inc., Red Hook, NY, USA, 2016, p. 5083–5091.

[31] K. Kimura, T. Yoshida, Non-negative matrix factorization with sparse features, in: 2011
IEEE International Conference on Granular Computing, 2011, pp. 324–329.

[32] P. Hoyer, Non-negative matrix factorization with sparseness constraints, Journal of
machine learning research (2004) 1457–1459.

[33] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman, The pascal visual
object classes challenge 2012 (voc2012) results, 2012. URL: http://www.pascal-network.
org/challenges/VOC/voc2012/workshop/index.html.

[34] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Places: A 10 million image database
for scene recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 40
(2018) 1452–1464.

[35] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional
neural networks, in: Advances in Neural Information Processing Systems, volume 25,
Curran Associates, Inc., 2012.

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html


[36] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015.

[37] D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, Network dissection: Quantifying
interpretability of deep visual representations, 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017) 3319–3327.

[38] S. Odense, A. Garcez, Layerwise knowledge extraction from deep convolutional networks,
ArXiv abs/2003.09000 (2020).

[39] B. Willmore, D. Tolhurst, Characterizing the sparseness of neural codes, Network (Bristol,
England) 12 (2001) 255—270.

6. Appendix

6.1. Best hyperparameters for each method

For each method in Tables 1 and 2 we select hyperparameter that yield the best accuracy on vali-
ation set. If different hyparameters yielded similar accuracy (less than 0.5% accuracy deviation)
we choose the parameters that yielded much higher Hoyer sparsity. The best parameters for
each dataset are shown in Table 3. Fig. 1 shows the results on different hyperparameter runs.

For EBP higher values for 𝐾 resulted in lower sparsity, higher number of atoms used in
explanations and lower fidelity. This is intuitive because most of the kernels in conv13 layer
are redundant for classification on road dataset or on the 6-class subset of Pascal. Moreover
from Fig. 1 is evident that as 𝐾 increases EBP performs similarly with other methods from the
literature, however, EBP performs better for lower 𝐾 .

Road dataset 6-class subset of Pascal dataset
Method parameters parameters
EBP 𝐾 = 25, 𝜆 = 0.001 𝐾 = 25, 𝜆 = 0.001
Sparseout 𝑝 = 0.3, 𝑞 = 2.5 𝑝 = 0.3, 𝑞 = 2

DutyCycle 𝑎̂𝑙 = 0.7, 𝛽 = 8 𝑎̂𝑙 = 0.7, 𝛽 = 8
𝑘-WTA 𝑘 = 0.8 𝑘 = 0.2
EASR 𝜆 = 0.00005 𝜆 = 0.00001

Table 3
Hyperparameters that yielded the best accuracy and Hoyer sparsity on road and 6-class subset of Pascal.
For Duty Cycle d and b refer to density and boost coefficients and for k-WTA 𝑘 stands for the sparse
ratio. The hyperparameters 𝑝 and 𝑞 control the percentage of neurons dropped in Sparseout and the
hyperparameter 𝜆 controls the regularization strength in the loss.

6.2. Probabilities of filter activations for each class

In Section 3 we defined the probability 𝑝𝑗𝑐 of a filter 𝑓𝑗 being active for a particular class 𝑐 as
in Equation 4. This probability is dynamically computed during training from the history of
activations. Fig. 4 (top) shows the evolution of a filter activation for each class before and after
applying EBP. Before applying EBP the filter fired in responce to a collection of patterns (trees,
road, cyclists), hence the probability of filter activation was spread across different classes (blue
histogram on Fig. 4). Moreover it was difficult to assess the cause of its activation. After training



Figure 4: Visualization of the receptive field and probability of filter activation per class before (second
column) and after applying EBP (third column). The histogram on the right hand side shows the
corresponding probabilities of activations of the filter for each class.

with EBP the filter fires in responce to a specific pattern (trees) which is shared between classes
but mostly present in forest road. Fig. 4 (bottom) shows the evolution of another filter that is
shared between classes. Before applying EBP the filter fired in responce to traffic signs and
trees. After training with EBP the filter fires in responce to traffic signs only which are present
mostly in highway and street classes (hence the probability for those classes has been boosted
in orange histogram). Observe that before applying EBP the probability of activation for forest
road was higher (since the presence of trees and traffic signs combined is higher in forest road
that in street and highway class).

6.3. Discussion of proposed method and regularization

In the proposed algorithm in Section 3 elite filters were not penalized during training, since the
assigned probability from Equation 4 is 1. This can be altered and introduce penalties for all
filters (elite included) by defining 𝑝𝑗𝑐 = 1− 𝐷𝑐

𝑗

𝐴𝑐
𝑟1

. Penalizing all filters may induce even more

activity sparsity. In our experiments we used the setup described in Section 3.
Furthermore, we recommend applying ridge weight regularization on the (𝑙 + 1) layer

following the EBP 𝑙-th layer to constrain weights in a small Euclidean ball. The reason is that
EBP penalizes activations on layer 𝑙 according to a probability distribution and if we do not
impose any constraints on the weights following that layer then the model has the freedom
to learn arbitrarily large weights on layer 𝑙 + 1 and possibly negate our penalization. In our
experiments we did not use additional regularization after conv13 (where EBP was applied)
in order to make our method directly comparable with other approaches from the literature.
However our preliminary experiments show no significant difference after adding this additional
regularization layer in the road and 6-class subset of Pascal dataset.


	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	4.1 Sparsity and Rule Extraction

	5 Conclusion and future work
	6 Appendix
	6.1 Best hyperparameters for each method
	6.2 Probabilities of filter activations for each class
	6.3 Discussion of proposed method and regularization


