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Abstract. Machine learning aims at generalizing from observations to
induce models that aid decisions when new observations arrive. However,
traditional machine learning methods fail at finding patterns from sev-
eral objects and their relationships. Statistical relational learning goes
a step further to discover patterns from relational domains and deal
with data under uncertainty. Most machine learning methods, SRL in-
cluded, assume the training and test data come from the same distri-
bution. Nonetheless, in several scenarios, this assumption does not hold.
Transfer learning aims at acting on scenarios like that, leveraging learned
knowledge from a source task to improve the performance in a target task
when data is scarce. A costly challenge associated with transfer learning
in relational domains is mapping from the source and target background
knowledge language. This paper proposes GROOT, a framework that
applies genetic algorithm-based solutions to discover the best mapping
between the source and target tasks and adapt the transferred model.
GROOT relies on a set of relational dependency trees built from the
source data as a starting point to build the models for the target data.
Over generations, individuals carry a possible mapping. They are sub-
mitted to genetic operators that recombine subtrees and revise the initial
structure tree, enabling a prune or expansion of the branches. Experi-
mental results conducted on Cora, IMDB, UW-CSE, and NELL datasets
show that GROOT reaches results better than the baselines in most
cases.

Keywords: transfer learning · statistical relacional learning · genetic
algorithm.

1 Introduction

Machine learning algorithms aim at generalizing observations from data to find
patterns that aid decision making about future observations. However, when the
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patterns involve multiple objects and their relationships, traditional machine
learning methods could not be enough to represent the relational interactions
among data [7]. In this way, it is necessary to rely on methods that take advantage
of the information that relational data could give through such interactions to
generate models that show the correlations between the multiple objects [11].
Relational learning is a machine learning branch that englobes methods capable
of dealing with relational data. Statistical relational learning combines relational
learning and statistical learning with data under uncertainty [11].

Still, most relational and non-relational machine learning methods assume
that the training and testing data come from the same feature space and distri-
bution. When this assumption does not hold, it is necessary to collect more data
and learn a new model from scratch, which can be expensive and, sometimes,
even impossible. To tackle those situations, transfer learning between related
tasks shows as a viable solution. [23] Transfer learning is a technique that lever-
ages knowledge previously learned from a source task to boost the induction
of a model to a target task, mainly when data is scarce [22]. Transfer learning
has drawn the attention of relational learning for some time to improve and
accelerate learning in the target domain [13], [15].

However, relational learning poses an additional challenge when transferring
knowledge from a source domain to a target domain since their vocabulary will
probably differ. Thus, it is necessary to establish a mapping from both vocabu-
laries so that the learned hypothesis can be used to represent the target data. In
[2], giving the hypothesis in the form of a relational regression tree, the frame-
work called TreeBoostler first finds a mapping, defining the replacement between
the source and target predicates, through a constrained search space built upon
their predicates. In relational setting, the predicate corresponds to a relation be-
tween arguments that correspond to the attributes of the relation. For example,
if the dataset indicates that Mary is daughter of John, we can define a predicate
called daughter that has the arguments Mary and John [1]. Also, the attributes
are typed. In the daughter relation, the arguments can be typed as person. 3 For
each possibility of mapping predicates and their types, the procedure verifies if
it can improve an evaluation function and revise the structure, making pruning
or expanding the leaves to new branches. However, finding the best mapping
could be challenging when background knowledge, from the source, target, or
both domains, has many predicates and types. A possible way to solve this prob-
lem is to use metaheuristics to find the best solution instead of searching almost
entirely the mapping space, constrained only to a few restrictions.

This work proposes GROOT4, a framework written in Python that receives
an initial set of trees from the source domain and applies genetic algorithm-
based solutions to transfer a learned hypothesis from a source domain to a target

3 The types are defined into the language bias, which here follows the Aleph and
Progol definitions.

4 https://github.com/MeLL-UFF/groot: the online repository contains the GROOT
code, an experiment example, besides the datasets used for the experiments con-
tained in this paper and the results.
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domain. The solutions are measured by RDN-Boost, creating a set of trees that
approximate the joint probability distribution over the variables as a product of
conditional distributions [19]. One solution is considered the best if it has the
best area under the Precision-Recall curve (AUC PR) metric. Each individual in
the genetic algorithm carries a possible mapping. The crossover between them
will combine random subtrees in two different individuals and the mutation could
expand or prune a branch. We experiment GROOT with four domains and find
out GROOT gives a better result in some metrics but needs a long time to return
the answers.

To sum up, our contributions are as follows: develop a method based on ge-
netic algorithm to map predicates between a source task to a target task and
use genetic operators to help the revision of the structure trees. The experi-
ment are made with relational datasets to evaluate how GROOT improves the
results compared with the baseline. The remainder of the paper is organized
as follows: Section 2 introduces the necessary background to understand fun-
damental concepts addressed in this paper. In this section, we clarify about
RDN-Boost, transfer learning, and genetic algorithm. Next, Section 3 brings re-
lated work showing transfer learning between relational tasks. Section 4 explains
the GROOT framework, including their algorithms and inner components. Sec-
tion 5 presents the results from GROOT, compared with the RDN-Boost and
TreeBoostler results. The final section ends with the conclusion about the work
and next steps.

2 Background Knowledge

In this section, we briefly introduce important concepts to the reader to under-
stand the foundations of our contributions. First, we describe the RDN-Boost
method. Next, we explain basic notions on transfer learning and finalize the
section with genetic search and optimization.

2.1 RDN-Boost

Dependency networks (DNs) are graphical models for probabilistic interactions.
A DN is a directed graph G = (V,E), usually cyclic, where each node vi ∈ V
corresponds to a random variableXi ∈ X, whereX is a set of variables enconding
probabilistic relationships. Each node is also associated with a positive joint
distribution approximated with a set P of conditional probability distributions
that are calculated as:

pi(Xi|parents(Xi)) = p(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn) = p(Xi|X \Xi) (1)

where parents(Xi) denotes the set of nodes with incoming edges to Xi. Unlike
Bayesian networks, the DN graph can be cyclic [10].

Relational dependency networks (RDNs) are an extension of DNs to the
relational setting. A RDN models the dependencies in a directed graph GM ,
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like in DNs, but each node corresponds to an object in the data and an edge
corresponds to a relationship among the objects. To each node in the graph, it
is associated a conditional probability, given by equation 1 [19, 21].

Finally, RDN-Boost [19] considers the conditional probability distribution as
a regression trees set to each predicate and, at each iteration, the idea is to
maximize the likelihood of the distributions with respect to a potential function.
The potential function is defined using an initial potential ψ0 and, iteratively,
adds the gradients ∆, which is the gradient of the likelihood function. In this
way, the potential function is given by

ψm = ψ0 +∆1 + ...+∆m (2)

where ∆i is the gradient at iteration i. When computing the equation 1,
each branch is applied to determine the branches that are satisfied and their
regression values are sumed up to the potential function [19].

2.2 Transfer Learning

Traditionally, machine learning methods assume the train and test data come
from the same distribution and feature space. However, in some scenarios, train-
ing data is scarce due to difficulties and the cost to collect them. The lack of
training data may degrade the machine learning method performance [26].

A possible way to tackle the lack of training data is to transfer a learned
model from a source task to the target task, allowing the use of data from
different domains, distributions, and tasks. The traditional learning process of
machine learning methods is to use, from scratch, the data from a target domain
to train and test a task. Transfer learning method aims to extract knowledge
from a source task and apply it to a target task, alleviating the need to train
the model from scratch in the target task [23].

Transfer learning is formalized as follows. Let X be the feature space, P (X)
the marginal probability distribution over X , and D = {X , P (X)} a domain.
The source domain Ds is defined as Ds = {Xs, P (Xs)} and the target domain,
Dt = {Xt, P (Xt)}. A task T is defined by a label space Y and an objective
function f(·) that can be learned from the training data (xi, yi), where xi ∈ X
and yi ∈ Y. A source task is defined as Ts = (Ys, fs(·)) and a target domain,
Tt = (Yt, ft(·)). With a source domain Ds and a source task Ts, a target domain
Dt and a target task Tt, where Ds 6= Dt or Ts 6= Tt, the goal is to learn the target
function f(·) leveraging the knowledge from Ds and Ts [23, 26, 27].

2.3 Genetic Algorithm

Genetic algorithm (GA) is a population-based metaheuristic based on natural
selection and the principles of genetic. The method walks in a space of candi-
date hypotheses to find the best candidate, defined by the objective function,
called fitness [8], [17]. GA relies on a population composed of individuals. Each
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individual contains a feasible solution to the problem, encoded in their chromo-
somes with genes inside. The evaluation of the population is made by the fitness
function that informs if an individual is a good or a bad candidate. Along the
generations, the GA evolves the solutions using genetic operators:

1. Selection: selects the best individuals according to their fitness value and
reallocates it to the population. One way to make the selection is the tour-
nament selection, which selects randomly k individuals from the population
and, with a probability p, selects the best.

2. Recombination: two parent individuals form new offsprings, recombining
their genes at different points.

3. Mutation: an individual has one of their genes randomly modified, gener-
ating a new solution, feasible or not.

At the end of all these steps, the old population is replaced by the new
population generated by the genetic operators. Also, it is possible to apply an
elitist technique, where the best individual of the last generation is introduced
on the current population without modifications [4, 17].

3 Related Work

Previous works have already proposed novel methods for leveraging transfer
learning to relational domains. In [2], the authors propose a framework called
TreeBoostler to transfer a RDN-Boost model learned from a source task to a
target task, searching for the best mapping between source predicates and types
and target predicates and types. After finding the mapping between the source
and target vocabulary, the performance of the transferred RDN-Boost is evalu-
ated over the target data. In order to accommodate target predicates that were
not mapped and adjust the learned trees to the target data, TreeBoostler employ
a final revision step. Such a component selects the revision points as the places
in the trees that have low probabilities for the true class. Next, from the revision
points, the revision operators either expand leaves to generate new branches or
prune nodes. TreeBoostler has a limitation when searching the best mapping:
the source predicate can only be substituted by one and only one target pred-
icate and the same is valid for the types. Furthermore, the search is almost
complete in the sense that are only some restrictions to avoid experimenting
with the whole search space of possible mappings. Depending on the size of the
vocabulaty, this can be a quite expensive process.Nevertheless, TreeBoostler was
successfully compared to TAMAR [15] and TODTLER [9].

Our framework is similar to the introduced solution but makes use of a
genetic algorithm instead of an exhaustive search. Also, GROOT allows making
a map between many source predicates to many target predicates, just adding
an identifier to the source predicate to turn it into a unique on. The source
types can be mapped to many target types, however, the target types can only
be mapped to one source type.
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Metaheuristics have already been used in Inductive Logic Programming.
In QG/GA [18], the authors investigate a method called Quick Generalization
(QG), which implements a random-restart stochastic bottom-up search to build
a consistent clause without the needing to explore the graph in detail. The ge-
netic algorithm (GA) evolves and recombines clauses generated by the QG, that
forms the population.

In [25], the authors present EDA-ILP and REDA-ILP, an ILP system based
on Estimation of Distribution Algorithms (EDA), a genetic algorithm variation.
Instead of using genetic operators, EDA builds a probabilistic model of solutions
and sample the model to generate new solutions. Across generations, EDA-ILP
evaluates the population using Bayesian networks and returns the fittest individ-
ual. In REDA-ILP, the method also applies Reduce algorithm in bottom clauses
to reduce the search space. In [14], the authors propose GENSYNTH, a tool
that synthesizes invented predicates, free from bias, to Datalog language prob-
lems. According to a fitness function, the tool uses steps inspired in the genetic
algorithm to find interpretable programs without language bias quickly.

4 GROOT: Genetic algorithms to aid tRansfer Learning
with bOOsTsrl

The proposed framework transfers relational dependency trees learned from a
source domain to a target domain. The idea is to take advantage of the built
structure trees using the source domain as a starting point to learn how to
solve the target task. Instead of conducting a complete search into the space
of solutions, GROOT employs a genetic algorithm to find the best mapping
between the predicates that optimizes the area under the Precision-Recall curve
(AUC PR) value. In addition, GROOT includes genetic operators to revise the
source structure to better accommodate the target examples.

4.1 Population

Along the generations, the genetic algorithm evaluates individuals in the popu-
lation, where which one carries a possible solution to the problem. In GROOT,
each individual is composed of chromosomes, a feasible mapping corresponding
to each node in the trees, and the fitness function value. Each chromosome is
a structure corresponding to one tree and each tree has alleles, corresponding
to each node. In our framework, each individual has 10 chromosomes. Figure 1
depicts how the individuals are encoded in GROOT.

GROOT allows mapping many source predicates to many target predicates.
To distinguish which source predicate has been replaced, a unique identifier is
appended to each one of them. This is made because if the source predicate
is the same always, the transfer will be made with the first mapped target
predicate. The map between the predicates is made at random but restricted
to predicates with the same arity and language bias. The target predicates are
selected according to the arity and language bias of the source predicate and
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Fig. 1: Schema showing how the individuals are defined in GROOT. Each chro-
mosome represents a tree and each allele, a predicate. The alleles carry the
mapping between the source and target vocabulary.

are part of the feasible substitution set. The predicates are mapped sequentially,
respecting the order they appear in the trees. If there are no feasible target
predicates to replace the source predicate, the source predicate is mapped to
null. For example, this case can occur when a source predicate has arity one but
none of the predicates in the target background knowledge has this arity.

We assume that GROOT input includes a set of trees from the source dataset
created with RDN-Boost using predicates from the source vocabulary. Each in-
dividual is a copy of this set, and each tree corresponds to a chromosome in the
individual. For each predicate appearing in the nodes, GROOT verifies which
predicate from the target vocabulary can be mapped for the source predicate.
Using the IMDB dataset as an example, consider that a node has an atom origi-
nated from the director(+person) predicate template. We need to find a predicate
in the target dataset with the same definition (arity equals one and person as
the type of the argument). Supposing the transference IMDB → UW-CSE, we
can map it either to professor(+person) or student(+person) as they have the
same arity and same type. If there is no target predicate with the same arity and
types, the source predicate is mapped to null(null). If mapping between types
is also possible, in this case, is person → person, we randomly choose the target
predicate that can uniformly replace the source predicate. The main node in the
trees already has a determined predicate, which is the predicate RDN-Boost is
learning. For example, for the IMDB dataset, the main predicate is workedun-
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der(+person, +person), which will be mapped to advisedby(+person, +person),
in the UW-CSE dataset.

4.2 Genetic Operators

The population can recombine and mutate a selected number of individuals. The
crossover operator exchanges information by combining parts of two individuals.
These two individuals are called parents and generate two new offsprings [17].
According to a crossover rate, two individuals are randomly chosen and, in each
one, the following steps are done:

1. a chromosome (a tree) is selected uniformly

2. in the selected chromosome, an allele (a node) is elected to be the exchange
point

3. the subtree starting at the selected alleles, including all the following nodes,
are swapped between the individuals

4. the unselect chromosomes are passed to the new individuals as they were in
the original individuals

After the crossover, two new individuals are created to replace the parents.
The Figure 2 shows an example of a crossover operation. The red nodes indicate
the alleles which will be exchanged between the individuals. On the right side of
the figure, it is possible to see the final result.

Fig. 2: Example of crossover between
two individuals with 3 chromosomes.
The red nodes are selected to be ex-
changed.

Fig. 3: A mutation example. Top: prun-
ing starts from the orange node and
erases all the nodes below it. Bottom:
the expansion example shows the possi-
bility to include a new node in one leaf.
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The mutation operator selects an individual according to a mutation rate
and applies small changes in their alleles. In GROOT, instead of changing the
mapping, a revision structure is applied. When evaluating the individuals, a
weighted variance of each node is returned as a result of the covered examples.
An example is covered when a path in the hypothesis covers it. If a node has a
variance higher than 2.5 × 10−3, it is considered a revision point and could be
pruned or expanded. This value is the same value used as default in TreeBoost-
ler [2]. The decision to prune or expand is made uniformly. An individual can
have many revision points but just one is chosen to be revised, at a generation.
The expansion is made if a revision point has, at least, one leaf. The leaf is
expanded with one predicate from the target domain. When pruning a node,
all the nodes under the revision point are also erased and, at the place of the
node, a leaf is set. In this case, it is not necessary to have leaves. The Figure 3
exemplifies how the mutation occurs in the individual.

4.3 Selection and Evaluation

Selection copies individuals with better fitness values to the population of indi-
viduals. A method called tournament selection is used in GROOT. The tourna-
ment selection chooses, at random, some individuals to enter into a tournament.
The individual in the group with the best fitness value wins and is selected to be
included in the population [4]. GROOT also applies elitism selection, where the
fittest individual of the generation is guaranteed to be in the next generation.
An individual is considered the fittest when it has the lowest negative AUC PR.
If more individuals have the same fitness value, the one with the lowest negative
conditional log-likelihood (CLL)5 score is chosen.

After applying the genetic operators, the population is evaluated to set the
fitness value for each individual. GROOT uses genetic algorithm to minimize the
negative value of the AUC PR value. The individuals carry the mapping between
the source and target predicates and the structure to make the transfer. The
mapping and structure trees are given to RDN-Boost, which trains the model
with the training dataset. The test dataset is used to evaluate how the model
performs and gives as result the area under the ROC curve (AUC ROC), AUC
PR, conditional log-likelihood values and others. The individual receives the
AUC PR value as the fitness value.

5 Experimental Results

In this section we present the experiments devised to answer the following re-
search questions:

– Question 1: Does GROOT perform better than learning from scratch?

5 Conditional log-likelihood gives the probability log of a given example be true, given
the other random variables.
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– Question 2: Does GROOT perform better than another transfer learning
framework?

– Question 3: Does GROOT reach good results in a viable time?

The first question focus on verifying the benefits of transfer learning com-
pared to learning from scratch. The second question is relative to how our frame-
work can perform comparing with another transfer learning framework when
using the same data. The final question addresses how long GROOT takes to
run the entire transfer process.

Next, we present the datasets used in the experiments and, finally, the method-
ology used to find the parameters of the genetic algorithm and the results.

5.1 Datasets

We used the following four datasets for the experiments.

– Cora dataset [3] contains citations to Computer Science research papers.
The dataset has 1295 distinct citations to 122 papers. The goal is to predict
samevenue, which shows the relation between two venues. The dataset has
10 predicates and five types, with the number of all ground literals equals
to 152100.

– IMDB dataset [16] contains five mega examples, describing four movies,
their directors and the first-billed actors who appear in them. A mega ex-
ample contains a connected group of facts and each one is independent of
the other [16]. The main predicate is workedunder, indicating if two per-
sons worked together. The dataset has six predicates, three types and 71824
ground literals.

– NELL [5] is a system that extracts information from web texts, learning
to read each day better than the day before. Our experiments ran with
two datasets created by the system: Finances, which predict if a company
belongs to an economic sector and Sports, predicting which sports a team
plays. NELL Sports dataset has eight predicates, four types and 4323, while
NELL Finances has 10 predicates, five types and 51578 ground literals.

– UW-CSE dataset [16] is a dataset with mega-examples based on five Com-
puter Science areas and lists facts about people in the academic department
and their relationships. The relation advisedby predicts if one person is ad-
vised by another person. The dataset has 14 predicates, nine types and 16900
ground literals.

Methodology We compared the results generated by GROOT with the perfor-
mance of TreeBoostler, another framework to transfer learning between rela-
tional domains that also uses RDN-Boost to evaluate their results. We also
compared with the results from models learned from scratch, produced by RDN-
Boost and RDN-B-1. RDN-B-1 differs from RDN-Boost because the model learns
just one tree, instead of a set of trees. GROOT starts from the trees created by
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Parameters

Mutation rate [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]
Crossover rate [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]

Number of individuals [10, 30, 50]

Table 1: Hyperparameters used in the optimization functon.

RDN-Boost when learning from the source domain for each experiment. The
datasets are, initially, divided in folds. For our experiments, we joined all the
folds and split it into three new folds, training the model with one fold and
evaluating with the remaining data, employing the same methodology used in
literature [6, 12, 2]. Cross-validation is applied: for each of the three folds, we
train five times to accommodate randomness with the current training set and
test with the other folds, completing each experiment with 15 trainings. The final
results are then averaged over the runs. Each training fold is divided into three
sub-folds to find the hyperparameters for the genetic algorithm. On these three
sub-folds, an internal cross-validation procedure is applied: one fold is selected
for training and two folds for validation. Finding the best combination of param-
eters for the genetic algorithm is a hard task. Thus, this search uses gp minize

from Scikit-Optimize package [24] built with Scikit-Learn. The gp minize func-
tion uses Bayesian optimization, approximating the desired function to optimize
by a Gaussian process. We used 10 evaluations to get the parameters in each
validation set. The RDN-Boost also has hyperparameters but we used the same
as defined in TreeBoostler [2]. The best validation set gives the parameters to
be used in the training fold. When training, we sample the amount of negative
as been the ratio of two negatives for one positive; when testing, we used all the
examples from the test dataset [20]. At the final generation, the best individual
of the population is chosen to give the mapping to generate the results.

IMDB → UW-CSE

CLL AUC ROC AUC PR Time

RDN-B-1 -0.239 ± 0.000 0.796 ± 0.000 0.085 ± 0.000 2.595 ± 0.124 s
RDN-B -0.814 ± 0.003 0.801 ± 0.005 0.094 ± 0.011 7.582 ± 0.457 s

TreeBoostler -0.368 ± 0.004 0.905 ± 0.004 0.168 ± 0.014 11.152 ± 0.700 s
GROOT -0.262 ± 0.033 0.939 ± 0.010 0.336 ± 0.018 18.3 ± 6.5 min

Table 2: Results for the experiment with IMDB and UW-CSE datasets, compar-
ing with TreeBoostler, RDN-B-1 and RDN-Boost. The table shows the values
for AUC ROC, AUC PR, CLL, and runtime. The first two rows show the results
when learning the target dataset from scratch.

Results The results are presented in Tables 2, 3, 4, and 5, with the experiments
realized between the IDMB, UW-CSE, Cora and NELL datasets, reporting the
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mean and standard deviation results. When GROOT finds the best results for
the metric, the values are shown in bold. GROOT obtains an improvement for
at least one metric in most of the experiments and achieves comparable results
when confronting with methods that learn from scratch, answering positively
the Question 1 and Question 2.

IMDB → Cora

CLL AUC ROC AUC PR Time

RDN-B-1 -0.213 ± 0.004 0.534 ± 0.008 0.012 ± 0.000 5.9 ± 5.1 min
RDN-B -0.500 ± 0.01 0.542 ± 0.006 0.013 ± 0.001 42.8 ± 7.6 min

TreeBoostler -0.325 ± 0.008 0.729 ± 0.006 0.261 ± 0.022 194.0 ± 50.1 min
GROOT -0.326 ± 0.006 0.582 ± 0.005 0.183 ± 0.010 41.0 ± 0.6 min

Table 3: Results for the experiment with IMDB and Cora datasets, comparing
with TreeBoostler, RDN-B-1 and RDN-Boost. The table shows the values for
AUC ROC, AUC PR, CLL, and runtime. The first two rows show the results
when learning the target dataset from scratch.

Cora → IMDB

CLL AUC ROC AUC PR Time

RDN-B-1 -0.224 ± 0.000 0.843 ± 0.000 0.487 ± 0.000 2.249 ± 0.067 s
RDN-B -0.697 ± 0.000 0.843 ± 0.000 0.487 ± 0.000 4.100 ± 0.137 s

TreeBoostler -0.236 ± 0.000 0.958 ± 0.001 0.541 ± 0.055 9.564 ± 0.140 s
GROOT -0.208 ± 0.015 0.965 ± 0.012 0.326 ± 0.176 86.4 ± 30.8 min

Table 4: Results for the experiment with IMDB and Cora datasets, comparing
with TreeBoostler, RDN-B-1 and RDN-Boost. The table shows the values for
AUC ROC, AUC PR, CLL, and runtime. The first two rows show the results
when learning the target dataset from scratch.

In Table 3, GROOT did not provide a good result. This is because the source
structure trees learned from the IMDB dataset have nodes with predicates con-
taining arity equals to one. The predicates from the Cora dataset have only
predicates with arity greater or equal to two. GROOT could not deal with this
problem and just replaced the source predicate with a null predicate. The null
predicate is a predicate that does not exist in any of the vocabularies and indi-
cates an absence of mapping. Instead of the previous commented table, in Table
2, the framework reaches the best result in AUC PR and AUC ROC metrics.
This occurs because GROOT can map the same source predicate to different tar-
get predicates, instead of TreeBoostler that attributes only one target predicate
to one source predicate.
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The statistical significance was measured by a paired t-test with p <= 0.05.
The values are considered statistically significant in the experiment IMDB →
Cora in all metrics, except by the pair GROOT and TreeBoostler. In the exper-
iment IMDB → UW-CSE, the AUC PR value is statistically significant when
considering the pair GROOT with both RDN-B-1 and RDN-Boost. Although
most of the experiments needed a long time to get the results, the experiment
IMDB → Cora reached the worst runtime in TreeBoostler results. This occurs
because the mapping between the predicates is poor, requiring a revision that
almost recreates all the trees. We wanted to show this case as en example of
a bad transfer scenario. Taking into account the experiment IMDB → Cora,
we attribute a partial negative answer to the Question 3. We conclude that,
besides the number of predicates and types, the quantity of ground literals also
impacts the time, mainly in the revision step. However in GROOT the revision
is not made in all revision points, so this is not an issue, enabling the framework
to have a lower runtime.

Nell Sports → Nell Finances

CLL AUC ROC AUC PR Time

RDN-B-1 -0.178 ± 0.005 0.601 ± 0.069 0.045 ± 0.025 10.948 ± 2.003 s
RDN-B -0.284 ± 0.019 0.796 ± 0.032 0.114 ± 0.027 56.401 ± 11.519 s

TreeBoostler -0.167 ± 0.006 0.979 ± 0.003 0.083 ± 0.026 2.6 ± 0.8 min
GROOT -0.197 ± 0.028 0.976 ± 0.012 0.167 ± 0.080 534.8 ± 219.3 min

Table 5: Results for the experiment with Nell datasets, comparing with Tree-
Boostler, RDN-B-1 and RDN-Boost. The table shows the values for AUC ROC,
AUC PR, CLL, and runtime. The first two rows show the results when learning
the target dataset from scratch.

6 Conclusion

This work proposes a framework called GROOT aiming at transfer learning
between relational domains. GROOT uses a genetic algorithm to find a mapping
between predicates from source and target datasets. Along with generations, each
individual carries a mapping for the transfer, exchange information with other
individuals, and revise their structure trees to get better performance.

The results presented an improvement, when compared with the baselines,
in the value of the metrics. In most of the experiments, GROOT improves the
AUC ROC values, even with the genetic algorithm optimizing the AUC PR met-
ric. We showed from experiments that GROOT reaches better or competitive
results when comparing with another transfer learning framework. This is possi-
ble because our framework provides a larger search space to make the mappings
between source and target domains, allowing more combinations for the predi-
cates replacement. Unlike TreeBoostler, GROOT allows mapping many source
predicates to many target predicates and one source type to many target types.
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However, those enhancements are generally followed with a longer runtime than
the baselines.

In future work, we intend to improve the evaluation component since the
genetic algorithm evaluates, in every generation, many individuals to train and
test the model. A possible solution for this problem is to rely on clever and
faster inference procedures. Another improvement concerns the tree revision. In
GROOT, the revision is made, at most, once in each tree, per generation. After
finding the best mapping and generate the model, the resulting structure could
be revised using a metaheuristic search, making prunings and expansions in the
branches.
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