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Abstract. We consider the problem of full model learning from rela-
tional data. To this effect, we construct embeddings using symbolic trees
learned in a non-parametric manner. The trees are treated as a decision-
list of first order rules that are then partially grounded and counted
over local neighborhoods of a Gaifman graph to obtain the feature rep-
resentations. We propose the first method for learning these relational
features using a Gaifman graph by using relational tree distances. Our
empirical evaluation on real data sets demonstrates the superiority of our
approach over handcrafted rules, classical rule-learning approaches, the
state-of-the-art relational learning methods and embedding methods.
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1 Introduction

Learning embeddings of large knowledge bases has become a necessity due to
the importance of reasoning about objects, their attributes and relations in large
graphs. Statistical Relational AI (StaRAI) [25,9] has the ability to learn and
reason with multi-relational data in the presence of uncertainty. A scalable ap-
proach, Discriminative Gaifman Model, via Gaifman networks was proposed
recently [23] that exploits Gaifman’s locality theorem [8]: every first-order sen-
tence is equivalent to a boolean combination of sentences over local entity neigh-
borhoods of the Gaifman graph. Relational Gaifman models seek to identify
locally-connected relational neighborhoods within knowledge bases for effective
representation, learning and inference. While effective, discriminative Gaifman
Models used relational features that were hand crafted rather than learned, i.e.,
there was no structure learning. Consequently, their applicability and adaptabil-
ity can become severely limiting.

Motivated by this limitation, we present the first set of approaches for rela-
tional embeddings that are guided by Gaifman locality theorem. Given that we
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are in a symbolic setting, these approaches have the distinct advantage of being
both explainable and interpretable. Specifically, we propose and investigate
three approaches: (1) As suggested by Niepert [23], we employ Inductive Logic
Programming (ILP) to learn discriminative first-order rules. These (conjunc-
tive) rules can then be treated as Boolean relational features. (2) Inspired by
the success of random walks in deep relational models [11], we employ relational
random walks (RRWs) as relational features. To this effect, we developed our
own random walk implementation built on an underlying ILP engine as against a
relational database as with the original work. (3) Finally, we use first-order trees
learned via relational one-class classification (relOCC [14]); specifically, each
path from root to leaf of a first-order trees is considered a relational feature.
That is, the structure is captured by the “relational density estimate”, which is
learned from data as a set of first-order trees. The motivation behind using a
density estimation technique to learn the relational features is that learning first
order rules for positives and sampled negatives independently results in a better
utilization of the search space thereby learning better discriminative features.

Given these relational features, that can be grounded based on Gaifman’s
locality theorem, one could apply traditional discriminative learning algorithms
such as Gradient Boosting and Logistic Regression. This allows for the embed-
ding creation method to be decoupled from the underlying classifier.

We consider the challenging problem of structure learning to ex-
ploit the importance of local neighborhoods in knowledge graphs. Our
key contributions are: (1) We present the first method for learning relational
embeddings for reasoning over large graphs using Gaifman’s locality theorem.
(2) We adapt a recently developed relational learning method for constructing
relational features (relOCC). (3) We adapt well-known first-order rule learners
for learning local neighborhood representations (ILP, RRWs). (4) We combine
these relational features with discriminative classifiers to learn discriminative
Gaifman models. (5) We demonstrate that combining the more novel first-
order trees with a discriminative classifier is more effective in learning
on large graphs compared to a standard ILP learner. Specifically our novelty
lies in the fact that we are learning rules for the positive and negative
instances separately using density estimation that allows for better discrimina-
tion. An important side-effect is that these rules are explainable in contrast to
many traditional embedding methods. (6) Our experiments reveal an important
characteristic of our approach: high recall without sacrificing precision in
both medical and imbalanced data sets.

2 Background and Related Work

Discriminative Gaifman Models: The Gaifman graph G of a knowledge base
B is an undirected graph, where the nodes are the entities e ∈ D. G contains
edges joining two nodes only if the entities a and b corresponding to those nodes
are present in a relation together R(. . . , a, . . . , b, . . .) ∈ B. G can be used to
easily identify co-occurrences (or lack thereof) among every pair of entities in B.
Fig. 1 shows a knowledge-base fragment and the corresponding Gaifman graph
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TransSubstr(Pravastatin, BileSaltExportPump)
TransInhib(Simvastatin, MultidrugResistProtein1)
EnzInhib(Pravastatin, CytochromeP4502C9)
EnzSubstr(Acetaminophen, CytochromeP4502C9)
EnzInhib(Simvastatin, CytochromeP4502C9)

Fig. 1: An example Gaifman graph for a drug-drug interaction
(DDI) knowledge base. Here, d1 = Pravastatin, d2 = Simvastatin,
d3 = Acetaminophen, t1 = BileSaltExportPump, t2 = MultidrugResistProtein1

and e1 = CytochromeP4502C9. The Gaifman graph connects entities that appear in a
relationship tuple; the dotted line between d1 and d2 is the link we want to predict.

for a drug-drug interaction (DDI) domain. Given entities (drugs, enzymes, trans-
porters) and their relationships, the underlying learning task is to predict if two
drugs interact. The dotted line is the target, and the task is link prediction.

The distance d(a, b) between two nodes (a, b) ∈ G is the minimum number
of hops required to reach b from a. The r-neighborhood of a node a ∈ G is the
set of all nodes that are at most a distance r from a in the Gaifman graph:
NGr (a) = {ā ∈ G | d(a, ā) ≤ r}. When a first-order rule ϕ(x) is relativized by
the neighborhood of the free variable x, the resulting first-order rule ψNr(x)(x) is
called r-local. A Gaifman neighborhood can be thought of as representing second-
order proximity between nodes. The interpretation is that nodes with shared
neighbors are more likely to be similar and more likely to have a link between
them. Discriminative Gaifman Models (DGMs, [23]) are relational models that
exploit structural features of a local neighborhood. These structural features are
aggregated from locally-sampled neighborhoods, and the aggregation is based on
the Gaifman locality theorem [8] stated as: every first-order sentence is logically
equivalent to a Boolean combination of basic r-local sentences.

For example, if querying about the drug d1 in Fig. 1, a search within the 1-
neighborhood of e1 (say), that is {t1, e1} is more relevant than searching through
the complete graph, which can be significantly computationally inefficient.

Representation Learning: Learning embeddings is well-studied and can
be categorized based on the underlying approaches: matrix factorization, deep
learning, edge reconstruction, graph kernels and generative models [3]. In general,
Gaifman models tend to scale better than many such approaches to higher-arity
relations and target-query complexity owing to their local view and incorporation
of count-based features as opposed to the global view of (say) neural network or
factorization methods which are forced to look at the entire graph to construct
effective embeddings. Recent work has also included the study of holographic
embeddings [21], which measure similarity through circular correlation and hy-
perbolic embeddings [22], which measure similarity and construct embeddings in
a hyperbolic space. While highly effective, a key drawback of these approaches is
their inability to incorporate new data, often requiring training of a new model.

Relational and Structure Learning: One of the most important tasks in
relational learning is that of link prediction which determines whether a relation
(link) exists between entities based on the given relational database[27]. Struc-
ture learning has been a well-studied problem in graphical models and can be
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Fig. 2: An overview of learning embeddings using Gaifman locality theorem.

defined as the problem of identifying a graph structure to principally summa-
rize dependencies in a data set and can be interpreted as learning probabilistic
(relational) rules from data [4,13].

3 Gaifman-guided Learning of Relational Embeddings

Given: Knowledge base B, facts Fs, and its corresponding Gaifman graph G;
Output: A discriminative model M that is trained for a particular link pre-
diction task T ;
To-Do: Construct a set of relational embeddings (features) Φ, and train a
discriminative learner to predict T .

We present the first set of model learning algorithms that employs
Gaifman local graphs. Our approach, Learning Gaifman-based relational Em-
beddings (LGE), (1) constructs (explainable) rules Φ that form the base set of
relational features. This is akin to structure learning in Statistical Relational
AI [25] models; (2) instantiates rules (grounding) and performs counting based
on task T to construct propositional features (embeddings) F ; and finally, (3)
learns a discriminative classifier with F . Fig. 2 shows an overview of our method.

We represent predicates and constants by capitialized letters and variables
by small letters. For example, in our DDI domain, Interacts(d1, “Metformin”)
represents a partially grounded example where Interacts is the predicate, d1 is
a variable and “Metformin” is a constant.

Given a knowledge base B, the Gaifman graph G is obtained by instantiating
the entities that are connected by an edge type (relation) together in the form
R(e1, e2), that is, relation(type1, type2). Gaifman neighborhood generation re-
lies on three parameters: (1) r, the depth of neighborhood when counting, (2)
k, the number of neighbors to sample, and (3) w, the number of neighborhoods
to be generated. The relation (link) to be predicted, defined by the target pred-
icate, forms the set of positive examples. We make the closed-world assumption,
that is, unobserved edges in the graphs are considered to be negative examples.
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Hence, the negative examples are constructed by taking the Cartesian product
of the entire entity set with itself and removing the examples which are present
in the positive example set. Following standard ILP terminology, each relational
example also has facts associated with it, which are the ground predicates in B
that describe relational example, its attributes and relationships. All such facts
are denoted Fs.

ILP for rule extraction: Our first solution is inspired by the use of an
Inductive Logic Programming (ILP) style learning method. This method learns
a set of discriminative Horn clauses. Specifically, we use an ILP system called
WILL [29] to learn the first-order rules as features4. This ILP system first se-
lects an example from the set of all examples and then finds a clause (rule)
that best covers the examples. Ideal coverage means all positive examples and
no negative examples which can easily overfit. To avoid overfitting, we obtain
the best covering which is the most general clause that maximizes the difference
between the number of positive and negative examples covered. Each best cov-
ering clause becomes a first-order rule in our model. The examples covered by
the clause are then removed and the process is repeated till a stopping criterion
(e.g., maximum of n rules) is satisfied. Some possible stopping conditions are: (1)
a certain number of examples are covered by the currently extracted set of rules,
or (2) we have extracted a maximum number of rules/clauses. Note that when
a stopping criterion requires n rules to be extracted, it is sometimes possible to
extract m < n rules that cover the examples adequately. Contrarily, if the first
condition is specified and the expected coverage is very high, it may require a
very large number of rules to be extracted before termination. Thus, in practice,
a combination of both conditions is employed. The key advantage of this method
is that these rules are both interpretable and explainable.

Features via Relational Random Walks: It is easy to view a relation

R(e1, e2) as an edge between two entity type nodes e1
R−→ e2 in a graph. A rela-

tional random walk (RW) through a graph is a chain of such edges corresponding
to a conjunction of predicates. For a random walk to be semantically sound, we
should ensure that the input type (domain) of the i+ 1-th predicate is same as
output type (range) of the i-th predicate. Example RW for drug-discovery is:

Interacts(d0, d3) ⇐ TargetInhib(d0, t0) ∧ TargetInhib(t0, d1)
∧TransporterSubstr(d1, t2) ∧ TransporterInhib(t2, d3).

This is a semantically sound random walk as it is possible to chain the second
argument of each predicate to the first argument of the succeeding predicate.
This random walk also contains inverse predicates (prefixed by an underscore,
such as Transporter). Inverse predicates are distinct from their corresponding
predicates as their arguments are reversed. Thus, this relational random walk
chains the first variable d0 in the target predicate Interacts(d0, d3) with the
second variable d3. The RW chain represents a relational feature and constitutes

4 Any ILP learner such as Aleph [26] or PROGOL [19] can be used.
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a random local structure:

d0
TargetInhibitor−−−−−−−−−−→ t0

TargetInhibitor−−−−−−−−−−−→· · ·
d1

TransporterSubstrate−−−−−−−−−−−−−−→ t2
TransporterInhib−−−−−−−−−−−−→ d3.

Thus, to construct a relational random walk, only the schema describing the
knowledge base is required. We adapt path-constrained random walks (PCRW,
[16]) to construct relational random walks. The algorithm starts at the first en-
tity in the target relation, and makes a walk over the (parameterized) graph to
end at the second entity present in the target relation. One limitation of PCRW
is that the random walks are only performed over binary relations. Consequently,
we employ our own implementation that uses a more general predicate represen-
tation that can learn with arbitrary n-ary relations. This implementation is built
on top of the WILL system [29] that we used in our first step. We constrain the
length of the random walks to avoid/prevent overfitting.

Density estimation via relocc for rule learning: A common issue in
many tasks, is that only the few “positive” instances of a relation are annotated
due to severe class imbalance (exponentially many negatives). This is because
the number of instances where the relation does not hold is very large, and
annotation can be prohibitively expensive. Learning with highly imbalanced data
sets requires reasoning over just the positive instances, commonly referred to
as one-class classification (OCC). Intuitively, if we can construct a relational
one-class classifier describing the positive examples, then rules characterizing
this classifier are essentially features that describe positive examples. One-class
classification typically requires a distance measure to characterize the density of
the positive class. While, for standard vector and matrix data, many different
distance measures exist, the issue is far more challenging for relational data, and
depends on the underlying representation of the classifier.

Suppose we use an off-the-shelf learner to learn first-order trees [1] to describe
each class in the data. Such first-order trees form a decision-list of logical rules
(similar to ILP but with negations). These trees can then be used to compute
the relational distance between a pair of examples x1 and x2, which are instances
of the the target predicate R(e1, e2) as in [14]. For a learned tree i:

RDi(x1, x2) =

{
0, LCA(x1, x2) is leaf;

e−λ·depth(LCA(x1,x2)), otherwise,
(1)

where LCA is the least common ancestor of examples x1, x2. Typically more than
one tree is learned, and the one-class classifier is a weighted combination of these
trees. The trees in one-class classifier are learned iteratively by updating the dis-
tance measure. Then, the overall distance function is simply the weighted com-
bination of the individual tree-level distances: CD(x1, x2) =

∑
i βiRDi(x1, x2)

where βi is the weight of the ith tree and
∑
i βi = 1, βi ≥ 0. The non-parametric

function CD(·, ·) is a relational distance measure learned on the data.
The distance function can then be used to compute the density estimate for

a new relational example z as a weighted combination of the distance of z from
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all training examples xj , E(z 6∈ class) =
∑
j αjCD(xj , z), where αj is the

weight of the labeled example xj and
∑
αj = 1, αj ≥ 0. Note that expectation

above is for z 6∈ class, since the likelihood of class membership of z is inversely
proportional to its distance from the training examples describing that class.

We learn a tree-based distance iteratively [14] to introduce new relational fea-
tures that perform one-class classification. The left-most path in each relational
tree is a conjunction of predicates with no negation, that is, a clause, which can
be used as a relational feature. This makes the model more tractable but any
path can be used if negation can be handled. Most importantly, this allows for an
interpretation similar to a Horn clause thus making the rules both interpretable
and explainable. We present the algorithm for learning rules using relOCC and
generating embeddings externally5. Some example rules (first 2 rules for +ve
examples and rest for -ve examples) learned for DDI are:

1. EnzymeInducer(A, C), EnzymeSubstrate(B, C), EnzymeInducer(B, D),
EnzymeInducer(A, D) =⇒ Interacts(A,B)
2. EnzymeSubstrate(A, C), EnzymeSubstrate(B, C), TransporterInducer(A,
D) =⇒ Interacts(A,B)
3. EnzymeInhibitor(A, C), Enzyme(C, B), TransporterInhibitor(A, D) =⇒
Interacts(A,B)
4. TargetAgonist(B, C), TransporterSubstrate(A, D), EnzymeSubstrate(B,
E), EnzymeSubstrate(A, E) =⇒ Interacts(A,B)

Ground features from relational rules: Once extracted, relational rules
are grounded and the number of satisfied groundings are aggregated . While sev-
eral feature aggregations exist, we use counts as they have been previously suc-
cessful in many statistical relational models [15,11]. For every predicate ϕ ∈ Φ,
the first and last entity are instantiated corresponding to the tuples satisfy-
ing the query (since it is a link prediction task, a query variable is of the
type q(e1, e2)) to give a partially grounded predicate). For example, in Fig.
1, let the positive example be Interacts(Pravastatin, Simvastatin). For the
predicate EnzymeInhib(d0, t0) ∧ EnzymeInhib(t0, d1), and the substitution
{d0/Pravastatin, d1/Simvastatin}, we obtain the partially-grounded predicate
EnzymeInhib(Pravastatin, t0) ∧ EnzymeInhib(t0, Simvastatin).

Next, all the predicates that completely satisfy this partially grounded fea-
ture are obtained. The features for each query variable are then obtained as
counts of the number of satisfied groundings that are also present in the neigh-
borhood of the query entities in the Gaifman graph G. For example, in Fig. 1, if
EnzymeInhib(Pravastatin, CP4502C9) ∧ EnzymeInhib(CP4502C9,
Simvastatin) satisfies the given predicate, since CP4502C9 (CP = Cytochrome)
is present in the Gaifman neighborhood of Pravastatin (as well as Simvastatin),
the count of the predicate is increased by 1. Thus, for every query variable q we

5 https://bit.ly/3jp9NA2

https://bit.ly/3jp9NA2
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obtain a propositional feature f = [f1, ...., f|Φ|] of length |Φ|:

fi =

{
|ψNr(q)(q)|, if q(e1, e2) partially grounds Φi,

0, otherwise.
(2)

Recall that ψ refers to the relativized first-order formula, and consequently
ψNr(q)(q) is the r-local formula for a neighborhood N of depth r. We count
the number of entities in the satisfied grounded features that are also satisfied
in the neighborhood structure of the Gaifman graph, thus constructing a propo-
sitionalized data set of |pos| × w +ve examples and |neg| × w -ve examples.

Learning a Discriminative Model: After learning the propositional fea-
tures, any standard classifier can be used for link prediction. One could poten-
tially use any classifier6. For our experiments, we employ gradient-boosting and
logistic regression. The classification algorithm itself is not a key contribution
of our work and as we demonstrate empirically next, any standard classifier will
often suffice for learning an effective model.

Effectiveness of relOCC in learning structure: The motivation behind
using a relational density estimation technique (relOCC) for rule learning is that
learning independently from different densities separately can potentially result
in better discrimination in the learned feature space.

The use of a relational one-class classifier [14] that classifies positive examples
based on a distance metric ensures that positive examples are projected close to
each other in the new feature space. Since we hypothesize that learning from the
example densities separately and independently results in a better discriminative
behavior, we go a step further and also learn a relational one class classifier for the
negative relational examples. This results in negative examples being projected
close to each other in the new feature space and further from positive examples.

An added advantage of using such a rule learning procedure to obtain the
propositional examples is that the learned examples directly represent the query
variable. The link prediction problem is thus reduced to a prediction problem in
the new feature space. This makes the approach independent of the learning
algorithm allowing for flexibility of the use of any learning algorithm.

Table 1: Evaluation domains and their properties.
Data set #Entities #Relations #Pos #Neg #RW rules #ILP rules #relOCC rules

DDI 355 15 2832 3188 68 36 25
PPI 797 7 1915 1915 42 5 15
NELL Sports 4147 6 300 600 36 15 13
Financial NLP 650 7 186 1029 222 6 25
ICML CoAuthor 558 5 155 6498 7 15 7

4 Experiments

We have made our code available at https://bit.ly/2YYHZZ4. We aim to an-
swer the following questions: Q1: How do different structure learning strategies
compare across diverse domains from different applications? Q2: How do differ-
ent structure learning strategies impact performance in the presence of high class

6 https://bit.ly/3jp9NA2

https://bit.ly/2YYHZZ4
https://bit.ly/3jp9NA2
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imbalance? Q3: What are effects of Gaifman locality parameters r, w and k? Q4:
How does our method compare with state-of the art probabilistic ILP systems?
Q5: How does our method compare with state-of the art relational embedding
methods? Q6: How does our method compare with different SOTA rule learning
methods including Niepert’s original approach [23] of using hand-crafted rules?

Data sets: We consider 5 real-world relational data sets (Table 1).
Drug-Drug Interactions (DDI) [6] consists of 78 drugs obtained from Drug-
Bank and the target is interactions between drug entities. Protein-Protein
Interactions (PPI) [15] is obtained from Alchemy and the target is inter-
action relation between two protein entities. NELL Sports was generated by
the Never Ending Language Learner [18] consisting of information about play-
ers and teams. The task is to predict whether a team plays a particular sport
i.e teamplayssport. Financial NLP is obtained by extracting information from
SEC Form S-1 documents and the target is to predict whether a word occurs in
a given sentence i.e. the relation sentenceContainsTarget. ICML Co-Author
is obtained by mining publication data from ICML 2018 and the target is the
CoAuthor relation between persons.

Baselines (Statistical Relational Learning methods): We compare the
performance of our method with 3 state-of-the-art SRL methods. RDN-Boost
[20] and MLN-Boost [13]: are SRL models that propose functional gradient
boosting of relational dependency networks (RDNs) and Markov logic networks.
Tuffy [24]: is an MLN learning and inference engine using RDBMS to obtain a
solution to the scalability problems of the underlying networks.

Baselines (Relational Embedding methods): We compare the perfor-
mance of our method with 9 relational embedding methods. The first 4 methods
use AmpliGraph library7 and the last 4 use PyKEEN python package8. ConvE
[5]: uses convolutions over embeddings and fully connected layers. ComplEx
[28]: uses a latent factorization based approach for the problem of link pre-
diction. DistMult [31]: learns representations of entities and relations as low-
dimensional vectors and bilinear and/or linear mapping functions. HolE [21]:
uses circular correlation of the vector representations of entities to create holo-
graphic embeddings. SimplE [12]: adapts the concept of Canonical Polyadic
decomposition to learn two dependent embeddings for each entity and relation.
We use the tensorflow implementation9. TransE/H/R/D [2,30,17,10]: are dif-
ferent translation based relational embedding methods.

Baselines (Rule Learning methods): We compare our method to 3 rule
learning methods. Handcrafted rules (Gaifman) [23]: consists of handwritten
rules that are then simply enumerated following the Gaifman locality. Neural
LP [32]: learns the first-order rules by ion an end-to-end differentiable model.
We use author provided code10 with #rules learned = 10. metapath2vec [7]:

7 https://github.com/Accenture/AmpliGraph
8 https://github.com/pykeen/pykeen
9 https://github.com/Mehran-k/SimplE

10 https://github.com/fanyangxyz/Neural-LP
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generates random walks with user defined metapaths and uses a skip-gram model
to generate embeddings. We use metapath2vec in Stellargraph11 package.

Results: Table 1 also shows the number of relational rules learned by differ-
ent techniques. Table 2 presents the results for all the relational domains (5-fold
cross validation) with logistic regression (LR) and gradient boosting (GB)12. All
experiments were run with parameter values r=1, k=10 and w=5.

Table 2: Comparison against SRL methods for the relational domains.
Data set Methods Accuracy Recall F1 AUC-ROC AUC-PR

LR GB LR GB LR GB LR GB LR GB

DDI

RW 0.657 0.669 0.469 0.530 0.564 0.602 0.647 0.662 0.581 0.593
ILP 0.696 0.774 0.467 0.674 0.592 0.729 0.684 0.767 0.710 0.765

relOCC 0.860 0.897 0.939 0.991 0.864 0.901 0.864 0.902 0.797 0.853
Gaifman 0.534 0.771 0.469 0.658 0.564 0.691 0.672 0.697 0.581 0.710

MLN-Boost 0.638 0.504 0.618 0.798 0.784
RDN-Boost 0.755 0.662 0.718 0.828 0.831

PPI

RW 0.700 0.785 0.586 0.707 0.661 0.767 0.699 0.785 0.651 0.740
ILP 0.613 0.661 0.397 0.553 0.506 0.620 0.613 0.661 0.579 0.614

relOCC 0.727 0.733 0.996 0.999 0.785 0.789 0.727 0.733 0.647 0.652
Gaifman 0.608 0.652 0.382 0.524 0.499 0.606 0.613 0.654 0.591 0.619

MLN-Boost 0.548 0.453 0.571 0.743 0.733
RDN-Boost 0.671 0.615 0.652 0.728 0.740

NELL Sports

RW 0.783 0.822 0.414 0.569 0.569 0.689 0.696 0.762 0.565 0.594
ILP 0.782 0.824 0.431 0.590 0.578 0.699 0.699 0.769 0.530 0.564

relOCC 0.793 0.833 0.431 0.6 0.59 0.731 0.708 0.778 0.574 0.643
Gaifman 0.756 0.780 0.314 0.485 0.465 0.597 0.648 0.707 0.512 0.549

MLN-Boost 0.605 0.533 0.667 0.894 0.853
RDN-Boost 0.812 0.756 0.714 0.884 0.834

Financial NLP

RW 0.833 0.833 0.0 0.0 0.0 0.0 0.5 0.5 0.168 0.168
ILP 0.838 0.921 0.068 0.633 0.112 0.727 0.530 0.806 0.200 0.6023

relOCC 0.965 0.967 0.788 0.800 0.882 0.889 0.867 0.879 0.826 0.833
Gaifman 0.827 0.914 0.0 0.59 0.0 0.705 0.5 0.787 0.173 0.587

MLN-Boost 0.928 0.764 0.757 0.989 0.807
RDN-Boost 0.975 0.963 0.929 0.989 0.901

ICML CoAuthor

RW 0.977 0.977 0.0 0.0 0.0 0.0 0.5 0.5 0.023 0.023
ILP 0.983 0.985 0.272 0.339 0.427 0.506 0.636 0.669 0.289 0.356

relOCC 0.986 0.997 0.346 0.386 0.517 0.557 0.653 0.693 0.370 0.40
Gaifman 0.981 0.984 0.100 0.327 0.174 0.493 0.529 0.664 0.127 0.343

MLN-Boost 0.938 0.326 0.214 0.294 0.210
RDN-Boost 0.940 0.434 0.231 0.153 0.157

[Q1] Comparing different structure learning strategies: We compare the
structure learning method by relOCC to two commonly used relational rule
learning techniques, relational random walks and inductive logic programming
and the results are shown in table 2. We note that relOCC outperforms the
baselines ILP and relational RWs methods across a majority of the domains.
This is expected since relOCC considers the density of the positive and negative
examples separately, as opposed to the other rule learning methods, allowing the
features it generates to discriminate better. This answers Q1.
[Q2] Effect of class imbalance: Imbalanced data sets are difficult to learn from
for the classical machine learning algorithms since it is assumed that the number

11 https://pypi.org/project/stellargraph/
12 For performance of algorithms other than LR and GB see https://bit.ly/3jp9NA2

https://bit.ly/3jp9NA2
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of examples are generally equally distributed among the classes to be predicted.
We consider the ICML CoAuthor (neg-to-pos ratio of 42:1) data set which is
highly imbalanced and Financial NLP (neg-to-pos ratio of 6:1) data set which is
relatively imbalanced; consequently, we report AUC-PR. In both domains, AUC-
PR for relOCC outperforms the other structure-learning methods by a large
margin. Random walk rules, in particular, cause all the examples to be classified
as negative, resulting in recall and F1-scores of 0 in both domains. Thus, we can
answer Q2: highly-imbalanced domains benefit from density-estimation-based
structure learning. This also verifies our hypothesis: learning from the example
densities separately and independently results in a better discriminative behavior.
[Q3] Effect of locality parameters: Fig. 3 shows the effects of varying r
(depth of neighborhoods), k (number of neighbors) and w (number of neigh-
borhoods) on the DDI data set. Generally, k does not affect performance signifi-
cantly, but increasing r causes recall report to drop sharply. This is because, with
r = 1, entities in the query neighborhood are more tightly coupled with entities
in the query variables. This parametric sensitivity analysis addresses Q3. Also,
another important takeaway is that relOCC rules exhibit high clinically-relevant
recall (≈ 1) on medical data sets: DDI and PPI. This has considerable implica-
tions for bioinformatics domains as recall is the most important metric; this is
because a false negative (such as a misdiagnosis) results in much more serious
consequences [6] than a false positive. Finally, from Fig. 3 (right), we note that
varying r and k does not affect training time, as these parameters do not affect
the search space. However, increasing w increases the run time since the size of
the neighborhood graph to be searched increases.

Fig. 3: (left) Accuracy, (middle) recall and (right) running time for various values
of r, k and w for the DDI domain. For varying r: w=5 and k=10, for varying w:
r=1 and k=10 and for varying k: w=5 and r=1.

[Q4] Comparison with PILP systems: Our core contribution is end-to-end
learning of Gaifman models that requires only data and no domain knowledge and
thus we focus on comparison with a full model learning methods of MLN-Boost
and RDN-Boost. Table 2 shows that our method outperforms MLN-Boost by a
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significant margin and outperforms/is comparable to the performance of RDN-
Boost in 4 out of 5 domains. We also note that Tuffy13 could not effectively scale
to the amount of data that we have used in our learning framework, and could
not learn the structure. Instead, we tried using the ILP rules that we learned,
and learned the weights. In this case as well, Tuffy could not complete training
after a few hours. To put this in perspective, we sampled 10% data from all the
data sets and the results for the same are presented in Fig. 4 which shows that
our method is significantly better than Tuffy on both balanced and unbalanced
data sets. Figure 4c shows the time taken by our method as compared to Tuffy
on the sampled data set. Since Tuffy does not support structure learning i.e.
rule learning, in order to keep the comparisons fair, we use the rules learned
by relOCC, convert them into the Tuffy format and run the inference. Thus,
for Tuffy we report only the inference time and compare it with the inference
time of our method (grounding + machine learning algorithm). We are able to
perform the inference far quicker than compared to Tuffy. Thus, to answer Q4,
we outperform several SOTA probabilistic ILP methods across domains.

(a) Comparison of our
method with Tuffy on bal-
anced data sets.

(b) Comparison of our
method with Tuffy on un-
balanced data sets.

(c) Comparison of run-
ning times of our method
and Tuffy.

Fig. 4: Comparison of our method and Tuffy on 10% sampled data sets.

[Q5] Comparison with relational embedding models: To answer Q5, we
compare against 9 state-of-the-art relational embedding methods. Table 3 shows
that our method outperforms all relational embeddings by a huge margin espe-
cially in the case of imbalanced data sets i.e. Financial NLP and ICML CoAu-
thor. These results show the importance of constructing first order rules from
the given data instead of directly using the triples since the inherent structure
of the underlying graph can be captured by our method.
[Q6] Comparison with rule learning methods: Finally, to answer Q6, we
compared against 2 state-of-the-art rule learning methods, NeuralLP and meta-
path2vec, and hand-written rules. For the handwritten rules, we created generic
relational features as suggested by Niepert and of the form: r(e1, e2); r(e2, e1);
∃x r(x, e), ∃x r(e, x), ∃x r(e1, x) ∧ r(x, e2), ∃x r(e2, x) ∧ r(x, e1) . These re-

13 We also tried other systems: Alchemy, Problog, ProbCog.
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Table 3: Comparison against relational embedding methods with results. We
report the results for our method using relOCC rules with gradient boosting.

Data set Metric ConvE ComplEx SimplE DistMult HolE TransE TransH TransR TransD relOCC

DDI

Accuracy 0.744 0.787 0.509 0.683 0.586 0.533 0.479 0.465 0.476 0.897
Recall 0.931 0.832 0.051 0.988 0.922 0.522 0.662 0.802 0.793 0.991

F1 0.544 0.618 0.030 0.567 0.483 0.320 0.348 0.387 0.389 0.901
AUC-ROC 0.744 0.818 0.195 0.962 0.844 0.541 0.554 0.653 0.659 0.902
AUC-PR 0.678 0.705 0.118 0.912 0.641 0.231 0.222 0.313 0.332 0.853

PPI

Accuracy 0.747 0.676 0.739 0.787 0.500 0.390 0.388 0.417 0.446 0.733
Recall 0.685 0.603 0.793 0.707 0.0 0.401 0.408 0.449 0.512 0.999

F1 0.729 0.650 0.752 0.768 0.0 0.397 0.400 0.435 0.480 0.789
AUC-ROC 0.829 0.732 0.828 0.823 0.500 0.332 0.331 0.385 0.424 0.733
AUC-PR 0.855 0.704 0.843 0.870 0.500 0.400 0.385 0.430 0.447 0.652

NELL Sports

Accuracy 0.667 0.629 0.548 0.607 0.756 0.544 0.530 0.470 0.448 0.833
Recall 0.711 0.733 0.633 0.633 0.633 0.622 0.600 0.489 0.511 0.600

F1 0.587 0.569 0.484 0.518 0.633 0.477 0.460 0.381 0.382 0.731
AUC-ROC 0.743 0.762 0.620 0.694 0.745 0.589 0.571 0.456 0.489 0.778
AUC-PR 0.517 0.628 0.437 0.645 0.730 0.452 0.423 0.332 0.3 0.643

Financial NLP

Accuracy 0.796 0.634 0.421 0.708 0.848 0.526 0.501 0.551 0.584 0.967
Recall 0.963 0.472 0.964 0.982 0.0 0.673 0.527 0.691 0.691 0.800

F1 0.589 0.281 0.335 0.505 0.0 0.301 0.243 0.318 0.335 0.889
AUC-ROC 0.953 0.574 0.779 0.918 0.5 0.631 0.485 0.648 0.711 0.879
AUC-PR 0.765 0.232 0.359 0.749 0.152 0.225 0.139 0.278 0.402 0.833

ICML CoAuthor

Accuracy 0.981 0.977 0.985 0.515 0.992 0.494 0.500 0.389 0.467 0.997
Recall 0.636 0.85 0.200 0.964 0.0 0.909 0.836 0.727 1.0 0.386

F1 0.020 0.030 0.007 0.032 0.0 0.029 0.027 0.020 0.031 0.557
AUC-ROC 0.005 0.018 0.010 0.921 0.500 0.790 0.691 0.502 0.858 0.693
AUC-PR 0.015 0.040 0.005 0.640 0.008 0.031 0.015 0.008 0.043 0.400

lational features are very simple, and do not cover the relational search space
sufficiently, resulting in significantly poor performance. And hence, we created
more domain-specific rules to enhance the score. For NeuralLP, the number of
rules learned = 10 and for metapath2vec, the length of the learned random walk
= 100, with the number of metapaths for each data set being: DDI = 3, PPI =
6, NELL Sports = 9, Financial NLP = 2 and ICML CoAuthor = 4.

It is clear from the results (Tab. 4) that even after enhancing the hand-
crafted rules and using different rule learning methods, the rules learned by
density estimation leads to much better predictive models thus answering Q6.

5 Conclusion and Future Work

We propose the first work for full model learning for relational data using Gaif-
man locality theorem. In addition to exploring the viability of established struc-
ture learning methods we proposed a novel structure-learning approach based on
relational density estimation. We constructs a set of rules, identify the appropri-
ate instantiations and finally count the number of groundings per rule to obtain
embeddings. We then train a discriminative classifier thus providing an effective
method of doing link prediction. There are several avenues to explore such as
joint learning of Gaifman models, generating explanations for a given prediction
and extending Gaifman locality to hypergraphs. Another direction is employing
more graph based embedding methods that can integrate with Gaifman’s local-
ity principle. Finally, evaluating on more real databases and knowledge graphs
is an interesting direction.
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Table 4: Comparison against several rule learning strategies. We use gradient
boosting for our method using relOCC rules and handwritten rules (Gaifman).

Data set Methods Accuracy Recall F1 AUC-ROC AUC-PR

DDI

Gaifman 0.771 0.658 0.691 0.697 0.710
Neural LP 0.632 0.777 0.470 0.741 0.404

metapath2vec 0.717 0.767 0.717 0.768 0.696
relOCC 0.897 0.991 0.901 0.902 0.853

PPI

Gaifman 0.652 0.524 0.606 0.654 0.619
Neural LP 0.395 0.336 0.357 0.345 0.440

metapath2vec 0.642 0.767 0.715 0.660 0.729
relOCC 0.733 0.999 0.789 0.733 0.652

NELL Sports

Gaifman 0.780 0.485 0.597 0.707 0.549
Neural LP 0.663 0.400 0.442 0.583 0.412

metapath2vec 0.778 0.867 0.765 0.875 0.850
relOCC 0.833 0.600 0.731 0.778 0.643

Financial NLP

Gaifman 0.914 0.590 0.705 0.787 0.587
Neural LP 0.705 0.745 0.434 0.768 0.314

metapath2vec 0.699 0.982 0.568 0.927 0.675
relOCC 0.967 0.800 0.889 0.879 0.833

ICML CoAuthor

Gaifman 0.984 0.327 0.493 0.664 0.343
Neural LP 0.718 0.800 0.045 0.846 0.179

metapath2vec 0.912 0.800 0.333 0.922 0.350
relOCC 0.997 0.386 0.557 0.693 0.400
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