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Abstract. We are interested in generating new small molecules which
could act as inhibitors of a biological target, when there is limited prior
information on target-specific inhibitors. This form of drug-design is as-
suming increasing importance with the advent of new disease threats for
which known chemicals only provide limited information about target
inhibition. In this paper, we propose the combined use of deep neural
networks and Inductive Logic Programming (ILP) that allows the use
of symbolic domain-knowledge (B) to explore the large space of possi-
ble molecules. Assuming molecules and their activities to be instances
of random variables X and Y , the problem is to draw instances from
the conditional distribution of X, given Y,B (DX|Y,B). We decompose
this into the constituent parts of obtaining the distributions DX|B and
DY |X,B , and describe the design and implementation of models to ap-
proximate the distributions. The design consists of generators (to approx-
imate DX|B and DX|Y,B) and a discriminator (to approximate DY |X,B).
We investigate our approach using the well-studied problem of inhibitors
for the Janus kinase (JAK) class of proteins. We assume first that if
no data on inhibitors are available for a target protein (JAK2), but a
small numbers of inhibitors are known for homologous proteins (JAK1,
JAK3 and TYK2). We show that the inclusion of relational domain-
knowledge results in a potentially more effective generator of inhibitors
than simple random sampling from the space of molecules or a gener-
ator without access to symbolic relations. The results suggest a way of
combining symbolic domain-knowledge and deep generative models to
constrain the exploration of the chemical space of molecules, when there
is limited information on target-inhibitors. We also show how samples
from the conditional generator can be used to identify potentially novel
target inhibitors.
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1 Introduction

Co-opting Hobbes, the development of a new drug is difficult, wasteful, costly,
uncertain, and long. AI techniques have been trying to change this [1], espe-
cially in the early stages culminating in “lead discovery”. Figure 1 shows the
steps involved in this stage of drug-design. In the figure, library screening can
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be either done by actual laboratory experiments (high-throughput screening) or
computationally (virtual screening). This usually results in many false-positives.
Hit Confirmation refers to additional assays designed to reduce false-positives.
QSAR (quantitative- or qualitative structure-activity relations) consists of mod-
els for predicting biological activity using physico-chemical properties of hits.
The results of prediction can result in additional confirmatory assays for hits,
and finally in one or more “lead” compounds that are taken forward for pre-
clinical testing. This paper focuses on the problem of lead discovery that goes
beyond the efficient identification of chemicals within the almost unlimited space
of potential molecules. This space has been approximately estimated at about
1060 molecules. A very small fraction of these have been synthesised in research
laboratories and by pharmaceutical companies. An even smaller number are
available publicly: the well-known ChEMBL database [2] of drug-like chemicals
consists of about 106 molecules. Any early-stage drug-discovery pipeline that
restricts itself to in-house chemicals will clearly be self-limiting. This is espe-
cially the case if the leads sought are for targets in new diseases, for which very
few “hits” may result from existing chemical libraries. While a complete (but
not exhaustive) exploration of the space of 1060 molecules may continue to be
elusive, we would nevertheless like to develop an effective way of sampling from
this space.

Fig. 1. Early-stage drug-design (adapted from [3]).

We would like to implement the QSAR module as a generator of new molecules,
conditioned on the information provided by the hit assays, and on domain-
knowledge. Our position is that inclusion of domain-knowledge allows the de-
velopment of more effective conditional distributions than is possible using just
the hit assays. Figure 2 is a diagrammatic representation of an ideal conditional
generator of the kind we require. The difficulty of course is that none of the
underlying distributions are known. In this paper, we describe a neural-symbolic
implementation to construct approximations for the distributions.

2 System Design and Implementation

We implement an approximation to the ideal conditional generator using a
generator-discriminator combination (see Fig. 3). We have decomposed the domain-
knowledge B in Fig. 2 into constraints relevant just to the molecule-generator
BG and the knowledge relevant to the prediction of activity BD (that is, B =
BG∪BD and P (X|B) = P (X|BG) and P (Y |X,B) = P (Y |X,BD)). The discrim-
inator module approximates the conditional distribution DY |X,B , and the com-
bination of the unconditional generator and filter approximates the distribution
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Fig. 2. An ideal conditional generator for instances of a random-variable denoting data
(X) given a value for a random-variable denoting labels (Y ) and domain-knowledge (B).
Here, Z ∼ D denotes a random variable Z is distributed according to the distribution
D. If the distributions shown are known, then a a value for X is obtainable through
the use of Bayes rule, either exactly or through some form approximate inference.

DX|B . The conditional generator then constructs an approximation to DX|Y,B .
For the present, we assume the unconditional generator and discriminator are
pre-trained: details will be provided below. The discriminator is a BotGNN [4].
This is a form of graph-based neural network (GNN) that uses graph-encodings
of most-specific clauses (see [5]) constructed using symbolic domain-knowledge
BD.

Fig. 3. Training a conditional generator for generating “active” molecules. For the
present, we assume the generator (G1) and discriminator (D) have already been trained
(the G1 and D modules generate acceptable molecules and their labels respectively:
the D̂’s are approximations to the corresponding true distribution). The Transducer
converts the output of G1 into a form suitable for the discriminator. Actual implemen-
tations used in the paper will be described below.

The generator-discriminator combination in Fig. 3 constitutes the QSAR
module in Fig. 1. An initial set of hits is used to train the discriminator. The
conditional generator is trained using the initial set of hits and the filtered sam-
ples from the unconditional generator and the labels from the discriminator.
Although out of the scope of this paper, any novel molecules generated could
then be synthesised, subject to hit confirmation, and the process repeated.

Generating Acceptable Molecules The intent of module G1 is to produce
an approximation to drawing samples (in our case, molecules) from DX|BG

. We
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describe the actual BG used for experiments in Sec. 3.1: for the present it is
sufficient to assume that for any instance X = x, if BG ∧ X = x |= � then
Pr(x|BG) = 0. Here, we implement this by a simple rejection-sampler that first
draws from some distribution over molecules and rejects the instances that are
inconsistent with BG.

For drawing samples of molecules, we adopt the text-generation model pro-
posed in [6]. Our model takes SMILES representations of molecules as inputs and
estimates a probability distribution over these SMILES representations. Samples
of molecules are then SMILES strings drawn from this distribution.

The SMILES generation module is shown in Fig. 4. The distribution of
molecules (SMILES strings) is estimated using a variational autoencoder (VAE)
model. The VAE model consists of an encoder and a decoder, both based on
LSTM-based RNNs [7]. This architecture forms a SMILES encoder with the
Gaussian prior acting as a regulariser on the latent representation. The decoder
is a special RNN model that is conditioned on the latent representation.

Fig. 4. Training a generator for acceptable molecules. Training data consists of
molecules, represented as SMILES strings, drawn from a database ∆. The VAE is
a model constructed using the training data and generates molecules represented by
SMILES strings. BG denotes domain-knowledge consisting of constraints on accept-
able molecules. The filter acts as a rejection-sampler: only molecules consistent with
BG pass through.

The architecture of the VAE model is shown in Fig. 5. The SMILES encoding
involves three primary modules: (a) embedding module: constructs an embedding
for the input SMILE; (b) highway module: constructs a gated information-flow
module based on highway network [8]; (c) LSTM module: responsible for dealing
with sequence. The modules (b) and (c) together form the encoder module.
The parameters of the Gaussian distribution is learnt via two fully-connected
networks, one each for µ and σ, which are standard sub-structures involved in
a VAE model. The decoder module (or the generator) consists of LSTM layers
followed by a fully-connected (FC) layer. We defer the details on architecture-
specific hyperparameters to Sec. 3.2. The loss function used for training our
VAE model is a weighted version of the reconstruction loss and KL-divergence
between VAE-constructed distribution and the Gaussian prior N (0,1).

Fig. 5. Architecture of the VAE in Fig. 4. m1,2, n, k represent the number of blocks.
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Obtaining Labels for Acceptable Molecules The intent of module D
is to produce an approximation to drawing samples (in our case, labels for
molecules) from DY |X,BD

. We describe the actual BD used for experiments in
Sec. 3.1. The discriminator in D is a BotGNN [4], which is a form of graph neu-
ral network (GNN) constructed from data (as graphs) and background knowl-
edge (as symbolic relations or propositions) using mode-directed inverse entail-
ment (MDIE [5]). In this work, data consists of graph-based representations of
molecules (atoms and bonds), and BD consists of symbolic domain-relations ap-
plicable to the molecules. The goal of the discriminator is to learn a distribution
over class-labels for any given molecules. Fig. 6 shows the block diagram of the
discriminator block.

Fig. 6. Discriminator based on BotGNN. “Logical” molecules refers to a logic-based
representation of molecules. Bottom-graphs are a graph-based representation of most-
specific (“bottom”) clauses constructed for the molecules by an ILP implementation
based on mode-directed inverse entailment.

Generating Active Molecules The intent of module G2 is to produce an
approximation to drawing from DX|Y,B . That is, we want to draw samples of
molecules, given a label for the molecule and domain-knowledge B. We adopt the
same architecture as the generator used for drawing from DX|BG

above, with a
simple modification to the way the SMILES strings are provided as inputs to the
model. We prefix each SMILES string with a class-label: y = 1 or y = 0 based
on whether the molecule is an active or inactive inhibitor, respectively. The VAE
model is also able to accommodate any data that may already be present about
the target, or about related targets (it is assumed that such data will be in the
form of labelled SMILES strings).

3 System Testing

Our aim is to perform a controlled experiment to assess the effect on system per-
formance of the inclusion of high-level symbolic domain-knowledge. Specifically:
we investigate the effect on the generation of new inhibitors for the target when:
(a) No domain-knowledge is available in the form of symbolic relations (but some
knowledge is available in a propositional form); and (b) Some domain-knowledge
is available in form of symbolic relations. We intend to test if the system is able
to generate possible new inhibitors in case (a); and if the performance of the
system improves in case (b).

3.1 Materials

Data The data used are as follows. (a) ChEMBL dataset [2]: 1.9 million molecules;
used to train the generator for legal molecules (G1); (b) JAK2 [9]: 4100 molecules
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(3700 active); used to test the conditional generator (G1) and to build the proxy
model for hit confirmation (see Method section below); (c) JAK2 Homologues
(JAK1, JAK3 and TYK2) [9]: 4300 molecules (3700 active); used to train the
discriminator (D) and train the conditional generator (G2).

Domain-Knowledge We use the following categories of domain-knowledge
(also see Appendix A). (a) Molecular Constraints [9,10]: Logical constraints on
acceptable molecules, including standard validity checks (based on molecular
properties); (b) Molecular Properties [9]: Bulk-properties of molecules (propo-
sitional in nature); (c) Molecular Relations [11]: Logical statements defining
ring-structures and functional groups (relational in nature).

Algorithms and Machines We use the following software. (a) RDKit [10]:
Molecular modelling software used to compute molecular properties and check for
the validity of molecules; (b) Chemprop [12]: Molecular modelling software used
to build a proxy model for hit confirmation; (c) Transducer: In-house software
to convert representation from SMILES to logic; (d) Aleph [13]: ILP engine used
to generate most-specific clauses for BotGNN; (e) BotGNN [4]: Discriminator
for acceptable molecules capable of using relational and propositional domain
knowledge; (f) VAE [14]: Generative deep network used for generators. We used
PyTorch for the implementation of BotGNN and VAE models, and Aleph was
used with YAP.

Our experimental works were distributed across two machines: (a) The dis-
criminator (D) was built on a Dell workstation with 64GB of main memory,
16-core Intel Xeon 3.10GHz processors, an 8GB NVIDIA P4000 graphics pro-
cessor; (b) The generators (G1, G2) are built on an NVIDIA-DGX1 station with
32GB Tesla V100 GPUs, 512GB main memory, 80-core Intel Xeon 2.20GHz
processors.

3.2 Methods

We describe the procedure adopted for a controlled experiment comparing sys-
tem performance in generating potential inhibitors when: (a) domain-knowledge
is restricted to commonly used bulk-properties about the molecules; and (b)
domain-knowledge includes information about higher-level symbolic relations
consisting of ring-structures and functional groups, along with the information
in (a). In either case, the method used to generate acceptable molecules (from
module G1 in Fig. 3) is the same.

Let B0 denote domain-knowledge consisting of bulk-molecular properties
used in the construction of QSARs for novel inhibitors; B1 denote the the
definitions in B0 along with first-order relations defining ring-structures and
functional-groups used in the construction of QSAR relations; and BG denote
the domain-knowledge consisting of constraints on acceptable molecules (see
“Domain-Knowledge” in Sec. 3.1). Let Tr denote the data available on inhibitors
for JAK1, JAK3 and TYK2; and Te denote the data available on inhibitors
for JAK2 (see “Data” in Sec. 3.1). Let ∆ denote a database of (known) legal
molecules. Then:
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1. Construct a generator for possible molecules given ∆ (the generator in mod-
ule G1 of Fig. 3) .

2. For i = 0, 1
(a) Let E0 = {(x, y)}Tr

1 , where x is a molecule in Tr and y is the activity
label obtained based on a threshold θ on the minimum activity for active
inhibition.

(b) Let BD = Bi

(c) Construct a discriminator (for module D in Fig. 3) using E0 and the
domain-knowledge BD (see Sec. 2);

(d) Sample a set of possible molecules, denoted as N , from the generator
constructed in Step 1;. Let N ′ ⊆ N be the set of molecules found to
be acceptable given the constraints in BG (that is, N ′ is a sample from
D̂X|BG

);
(e) For each acceptable molecule x obtained in Step 2d above, let y be the

label with the highest probability from the distribution D̂Y |X,B con-

structed by the discriminator in Step 2c. Let E = {(x, y)}N ′

1

(f) Construct the generator model (for module G2 in Fig. 3) using E0 ∪ E.
(g) Sample a set of molecules, denoted as Mi, from the generator in Step 2f;
(h) Let M ′i ⊆ Mi be the molecules found to be acceptable given the con-

straints in BG (that is, M ′i is a sample from DY |X,BG
)

3. Assess the samples M0,1 obtained in Step 2g above for possible new inhibitors
of the target, using the information in Te

The following details are relevant:

– For experiments here ∆ is the ChEMBL database, consisting of approx-
imately 1.9 million molecules. The generator also includes legality checks
performed by the RDKit package, as described in Sec. 2;

– Following [9], θ = 6.0. That is, all molecules with pIC50 value ≥ 6.0 are
taken as “active” inhibitors;

– The discriminator in Step 2c is a BotGNN. We follow the procedure and
parameters described in [4] to construct BotGNN. We use GraphSAGE [15]
for the convolution block in the GNN. This is based on the results shown
in [4] for including symbolic domain knowledge for graph-based data (like
molecules);

– The generators in Steps 1 and 2f are based on the VAE model described ear-
lier. The hyperparameters are as follows: vocabulary length is 100, embedding-
dimension is 300, number of highway layers is 2, number of LSTM layers in
the encoder is 1 with hidden size 512, and the type is bidirectional, number
of LSTM layers in the decoder is 2, each with hidden size 512, dimension of
latent representation (z) is 100.

– To make our generator robust to noise and to be generalised, we also use a
word-dropout technique. This technique is identical to the standard practice
of dropout in deep learning except that here the tokens to the decoder are
replaced by ‘unknown’ tokens with certain probabilities. Here we call it the
word-dropout rate and fix it at 0.5.
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– The reconstruction loss coefficient is 7. We use cost-annealing [6] for the
KLD-coefficient during training. We use the Adam optimizer [16] with learn-
ing rate of 0.0001; training batch-size is 256.

– In Step 2d, |N | = 30, 000. The BG provided here results in |N ′| = 18, 000;

– In Step 2g, |M0| = |M1| = 5000.

– The acceptable molecules M ′0,1 after testing for consistency with BG are
assessed along two dimensions:

(a) Activity : In the pipeline described in Fig. 1 assessment of activity would
be done by in vitro by hit confirmation assays. Here we use a proxy
assessment for the result of the assays by using an in silico predictor
of pIC50 values constructed from the data in Te on JAK2 inhibitors.
The proxy model is constructed by a state-of-the-art activity prediction
package (Chemprop [12]: details of this are in the Appendix).4 We are
interested in comparing the proportions of generated molecules predicted
as “active”;

(b) Similarity : we want to assess how similar the molecules generated are
to the set of active JAK2 inhibitors in Te.5 A widely used measure
for this is the Tanimoto (Jacquard) similarity: molecules with Tanimoto
similarity > 0.75 are usually taken to be similar. We are interested in
the proportion of molecules generated that are similar to known target
inhibitors in Te;

Each sample of moleculesMi drawn from the conditional generator can there-
fore be represented by a pair (ai, bi) denoting the values of the proportions in
(a) and (b), and (c) above. We will call this pair the “performance summary”
of the set Mi;

– We compare performance summaries of sets of molecules in two ways. First,
a performance summary Pi = (ai, bi) can be compared against the perfor-
mance summary Pj = (aj , bj) in the obvious lexicographic manner. That is,
Pi is better than Pj if [(ai > aj)] or [(ai = aj) ∧ (bi > bj)]. Secondly, since
all the elements of a performance summary are proportions, we are able to
assess if the differences in corresponding values are statistically significant.
This is done using a straightforward hypothesis test on proportions. Given
an estimate p of a proportion of N instances, the distribution of proportions

is approximately Normal, with mean p and s.d. σ =
√

p(1−p)
N . For testing the

hypothesis pj < pi at a 95% confidence level the critical value from tables of
the standard normal distribution is 1.65. That is, if pj < 1.65σ we will say
the difference is statistically significant at the 95% level of confidence.

4 Such a model is only possible in the controlled experiment here. In practice, no
inhibitors would be available for the target and activity values would have to be
obtained by hit assays, or perhaps in silico docking calculations.

5 Again, this is feasible in the controlled experiment here. In practice, we will have no
inhibitors for the target, and we will have to perform this assessment on the data
available for the target’s homologues (Tr).
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3.3 Results

A summary of the main results obtained is in Fig. 7. The principal points in
this tabulation are these: (1) The performance of the system with BD = B1 is
better than with BD = B0 or simple random draw of molecules; and (2) The
differences in proportions for Activity and Similarity are statistically significant
at the 95% confidence level. Taken together, these results suggest that the inclu-
sion of symbolic relations can make a significant difference to the performance of
the generation of active molecules. We turn next to some questions of relevance
to these results:

Qty. BD = B1 BD = B0 Random

|M | 5000 5000 5000
|M ′| 2058 2160 2877
Act 0.47 (0.01) 0.43 (0.01) 0.34 (0.01)
Sim 0.14 (0.01) 0.11 (0.01) 0.00 (0.00)

Fig. 7. Summary of system performance. BD = B1 denotes that the discriminator has
access to both propositional and relational domain-knowledge; BD = B0 denotes that
the discriminator has access to propositional domain-knowledge only. Random denotes
a random draw of molecules from the unconditional molecule generator G1. M denotes
the set of molecules drawn (from the conditional generator, or from the unconditional
generator for Random). M ′ denotes the set of acceptable molecules generated in the
sample of M molecules (acceptable molecules satisfy molecular constraints defined on
molecular properties). Act denotes the proportion of M ′ that are predicted active (the
proxy model predicts an pIC50 ≥ 6.0); Sim denotes the proportion of M ′ that are
similar to active target inhibitors (Tanimoto similarity to active JAK2 inhibitors >
0.75). The numbers in parentheses denote the standard deviation in the corresponding
estimate.

Better Discriminators? A question arises on whether the differences in pro-
portions would be different if we had compared against a different discriminator
capable of using BD = B0. Since B0 is essentially propositional in nature, any
of the usual statistical discriminative approaches could be used. We have found
replacing the BotGNN with an MLP with hyper-parameter tuning resulted in
significantly worse performance than a BotGNN with BD = B1. We conjecture
that similar results will be obtained with other kinds of statistical models. On
the question of whether better discriminators are possible for BD = B1, we note
results in [4] show BotGNNs performance to be better than techniques based on
propositionalisation or a direct use of ILP. Nevertheless, better BotGNN mod-
els than the one used here may be possible. For example, we could construct
an activity prediction model for the JAK2 homologues using a state-of-the-art
predictor like Chemprop. The prediction of this model could be used as an ad-
ditional molecular property by the BotGNN.

Better Generators? Our generators are simple language models based on vari-
ational auto-encoders. Substantial improvements in generative language models
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(for example, the sequence models based on attention mechanism [17,18]) sug-
gest that the generator could be much better. In addition, the rejection-sampling
approach we use to discard sample instances that fail constraints in BG is in-
herently inefficient, and we suggest that the results here should be treated as a
baseline. The modular design of our system-design should allow relatively easy
testing of alternatives.

Related to the question of discriminators is the role of ILP in this work. ILP
is used to include domain-knowledge in the construction of the BotGNN discrim-
inator. How important was this use of ILP? A quantitative answer is difficult,
but we are able to provide indirect, qualitative evidence for the utility of ILP by
comparison against a recent result on the same data in [9]. That work differs from
the one here in the following ways: (a) No symbolic domain-knowledge is used
in the discrimination step; and (b) Substantially more computation is involved
in developing the final generator–the equivalent of module G2 here–through the
use of reinforcement learning (RL). The principal concern in [9] is to generate
molecules similar to the active inhibitors for JAK2, and the approach results
in 5% of the sampled molecules being similar. The corresponding results here
are significantly higher: 14% (with BD = B1) and 11% (BD = B0). Both results
were obtained with BotGNNs, without requiring the additional episodic training
characteristic of RL. Therefore, we believe BotGNNs have played an important
role, both in prediction and in easing computation. Since ILP is necessary for
the construction of a BotGNN, their importance to the current system-design
follows.6

Finally, we consider how samples from the conditional generator can be used
to identify potential molecules for synthesis and testing in hit-confirmation as-
says. We propose a selection based on a combination of (predicted) activity and
similarity to the existing inhibitors (when these are unavailable, we would have
to rely on models constructed with the target’s homologues). Using these mea-
sures, there are two surprising subsets of molecules. Molecules in S are those
that are similar to JAK2 inhibitors (Tanimoto similarity > 0.75), but have a low
predicted activity (substantially lower than 6.0); and molecules in S are signifi-
cantly different to the JAK2 inhibitors (Tanimoto similarity < 0.5), but have a
high predicted activity (substantially higher that 6.0).7 For the sample in this
paper, S = ∅. However, S 6= ∅ and can provide interesting candidates for novel
inhibitors. We exemplify this with a chemical assessment of 3 elements from S.
This is shown in Fig. 8. Molecule 1562 is identified as a possible candidate for
synthesis and hit confirmation.

4 Related Work
Recent applications of AI-based methods have shown promise in transforming
otherwise long and expensive drug discovery process [21,22]. The initial studies

6 Could we have directly used ILP for constructing the discriminator? Yes, but there
is substantial evidence to suggest that the use of ILP through BotGNNs results in
better discriminators [4].

7 A good reason to consider dissimilar molecules is that it allows us to explore more
diverse molecules.



Knowledge Assisted Lead Discovery in Drug Design 11

ID Structure Descriptors Assessment

551
Act = 9.12
Sim = 0.15

This molecule has very low similarity to
known JAK2 inhibitors. Also none of
the groups specific to JAK2 could be
identified by the substructure search.
Discard this molecule.

1548
Act = 9.04
Sim = 0.22

This molecule has very low similarity to
known JAK2 inhibitors. Also none of
the groups specific to JAK2 could be
identified by the substructure search.
However, the sulfonamide group com-
monly found in JAK family inhibitors
was found to be present (highlighted)

1562
Act = 9.49
Sim = 0.32

Despite low similarity to existing
JAK2 inhibitors, 1562 had one JAK2-
selective subgroup and a group com-
mon to JAK inhibitors, indicating po-
tential to act as JAK family inhibitor,
but the selectivity to JAK2 cannot
be confirmed. Possibly interesting new
scaffold (highlighted) and worth pursu-
ing further.

Fig. 8. A chemical assessment of possible new JAK2 inhibitors. The molecules are
from the sample of molecules from the conditional generator, that are predicted to
have high JAK2 activity, and are significantly dissimilar to known inhibitors. The
assessment is done by one of the authors (AR), who is a computational chemist. The
assessment uses structural features and functional groups identified for the JAK2 site
in the literature [9,19,20].

were focused on exploring vast yet unexplored chemical space for a better screen-
ing library. In [23], a recurrent neural network (RNN) based generative model
was trained with a large set of molecules and then fine-tuned with small sets of
molecules, which are known to be active against the target. Some other works
focus on drug-like property optimization, which helped in biasing the models
to generate molecules with specific biological or physical properties of interest.
Deep reinforcement learning has been very effective in constructing generative
models that could generate novel molecules with the target properties [22,24,25].
The efficiency of these kinds of models to generate chemically valid molecules
with optimized properties has improved significantly [9,24]. There are also at-
tempts to build molecule generation models against novel target proteins, where
there is a limited ligand dataset for training the model [26].

Recurrent Neural Networks (RNNs) are a popular choice for molecule gen-
eration. For example, [27] propose a bidirectional generative RNN, that learns
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SMILES strings in both directions allowing it to better approximate the data dis-
tribution. Attention-based sequence models such as transformers have recently
been used for protein-specific molecule generation [28]. There are also generative
models, for instance, masked graph modelling in [29], that attempts to learn a
distribution over molecular graphs allowing it to generate novel molecule with-
out requiring to dealing with sequences. Some generative modelling techniques
for molecule generation are surveyed in [30].

Incorporating domain-knowledge into deep neural networks have shown con-
siderable success over the years. There are several categories of domain knowl-
edge that has been incorporated into learning, primarily referring to the way
the knowledge is represented [31]. We present here a brief overview of methods
that deal with domain-knowledge represented in a relational form. Possibly the
earliest approach to integrating this kind of domain-knowledge is propositional-
isation [32,33]. It is a technique to transform a relational representation into a
propositional single-table representation where each column in the table corre-
sponds a feature that represents a relation constructed from data and domain-
knowledge. Propositionalisation is the core technique in construction of deep
relational machines [34,35,36]: these are multi-layered perceptrons constructed
from propositionalised representation of relational data and domain-knowledge.
Recent studies on domain-knowledge inclusion include construction of graph neu-
ral networks (GNNs) that can learn not only from relational (graph-structured)
data but also symbolic domain-knowledge. For instance, the vertex-enrichment
approach in [37] constructs an enriched vertex-labelling for graph-structured
data instances by treating available domain relations as hyperedges. Another
approach transforms the most-specific (bottom) clauses in ILP into a bipar-
tite graph structures [4]. These graphs are called bottom-graphs. A GNN can
be learned from these bottom-graphs, thereby allowing a principled way of inte-
grating symbolic domain-knowledge into GNNs. A recent survey presents a more
elaborate discussion on various kinds of domain-knowledge and the methods of
their inclusion into deep neural networks [38].

5 Concluding Remarks

Incorporating some form of domain-knowledge into AI-based scientific discovery
has been emphasised strongly in [39]. A cutting-edge example of this form of
scientific discovery is the Robot Scientist [3], the latest generation of which–
Eve–is concerned with automating early-stage drug-design. At the heart of Eve
is the development of QSAR models. To the best of our knowledge, generation
of molecules is restricted to a library of known chemicals; and the use of domain-
knowledge is limited to pre-defined features. In this work, we have proposed an
approach that can generate novel molecules drawn from the very large space of all
possible small molecules, rather than pre-defined libraries; and we use a method
that allows the inclusion of relational domain-knowledge. The paper makes the
following contributions: (1) We have constructed a complete end-to-end neural-
symbolic system that is capable of generating active molecules that may not
be in any existing database; (2) We have demonstrated usage of the system on
the classic chemical problem on Janus kinase inhibitors. Importantly, working
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with a computational chemist, we have shown how the system can be used
to discover an active molecule based on entirely new scaffolds; (3) The results
reaffirm the conclusions from [4] that inclusion of relational domain knowledge
through the use of ILP techniques can significantly improve the performance of
deep neural networks. To the best of our knowledge, the system-design is the first-
of-a-kind combination of neural generative models, techniques from Inductive
Logic Programming and symbolic domain-knowledge representation for lead-
discovery in early stage drug-design, and is of relevance to platforms like Eve.

Our system design is intentionally modular, to allow “plug-and-play” of dis-
criminators and generators. Indeed, there is already evidence from the construc-
tion of language-models that the VAE-based generators we have used could be
replaced by transformer-based deep networks. Thus, an immediate next step
would be to replace the existing generators with pre-trained language models
like GPT-2. We would also expect that molecular constraints would include both
hard- and soft-constraints (unlike here, where only hard-constraints are used).
This may presage a move to a probabilistic logic representation of the domain-
knowledge. On discriminators, BotGNNs continue to be a good choice for inclu-
sion of symbolic knowledge into deep networks, although, as we have pointed out,
the BotGNN model could be improved by inclusion as part of domain-knowledge,
results from models constructed by programs like like Chemprop (the extensive
use of fingerprints by such programs is essentially a form of relational informa-
tion), and also the possibility of inclusion of 3-dimensional constraints (see for
example, [40]). Looking beyond the goal of novel molecule generation, a promis-
ing line of research concerns the development of schedules for synthesis of new
molecules. Of special interest is to consider if techniques for experiment-selection
could be adopted for prioritising molecules for synthesis.
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A Domain-Knowledge used in Experiments

The domain constraints in BG are in the form of constraints on acceptable
molecules. These constraints are broadly of two kinds: (i) Those concerned
with the validity of a generated SMILES string. This involves various syntax-
level checks, and is done here by the RDKit molecular modelling package; (ii)
Problem-specific constraints on some bulk-properties of the molecule. These are:
molecular weight is in the range (200, 700), the octanol-water partition coeffi-
cients (logP) must be below 6.0, and the synthetic accessibility score (SAS) must
be below 5.0. We use the scoring approach proposed in [41] to compute the SAS
of a molecule based on its SMILES representation.

The domain-knowledge in BD broadly divides into two kinds: (i) Proposi-
tional, consisting of molecular properties. These are: molecular weight, logP,
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SAS, number of hydrogen bond donors (HBD), number of hydrogen bond ac-
ceptor (HBA), number of rotatable bonds (NRB), number of aromatic rings
(NumRings), Topological Polar Surface Area (TPSA), and quantitative estima-
tion of drug-likeness (QED); (ii) Relational, which is a collection of logic pro-
grams (written in Prolog) defining almost 100 relations for various functional
groups (such as amide, amine, ether, etc.) and various ring structures (such as
aromatic, non-aromatic, etc.). The initial version of these background relations
was used within DMax chemistry assistant [11]. More details on this background
knowledge can be found in [4,37].

B Proxy Model for Predicting Hit Confirmation

A proxy for the results of hit confirmation assays is constructed using the assay
results available for the target. This allows us to approximate the results of such
assays on molecules for which experimental activity is not available. Of course,
such a model is only possible within the controlled experimental design we have
adopted, in which information on target inhibition is deliberately not used when
constructing the discriminator in D and generator in G2. In practice, if such
target-inhibition information is not available, then a proxy model would have to
be constructed by other means (for example, using the activity of inhibitors of
homologues).

We use the state-of-the-art chemical activity prediction package Chemprop.8

We train a Chemprop model using the data consisting of JAK2 inhibitors and
their pIC50 values. The parameter settings used are: class-balance = TRUE,
and epochs = 100 (all other parameters were set to their default values within
Chemprop). Chemprop partitions the data into 80% for training, 10% validation
and 10% for test. Chemprop allows the construction of both classification and
regression models. The performance of both kinds of models are tabulated below:

Partition Classification Regression
(AUC) (RMSE)

Valid 0.9472 0.6515
Test 0.8972 0.6424

The classification model is more robust, since pIC50 values are on a log-scale.
We use the classification model for obtaining the results in Fig. 7, and we use the
prediction of pIC50 values from the regression model as a proxy for the results
of the hit-confirmation assays.

8 It is likely that a BotGNN with access to the information in BD along with the
Chemprop prediction would result in a better proxy model. We do not explore this
here.
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